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We are going to compute the spectrum of a Ryd
atom in a rather roundabout way ,

for reasons

that will become clear later
. So let's just

get started with..

WO-BODYLOULOMB SCATTERING

-

>- :-

⑳ Lt#Zz

Incident plane
---

wave
Scattered wave function

going to a detector

Asymptotic wave function describing
this scenario :

ikz4 Tres = e + f(o,u)ihr
m



We want to obtain a solution of the

Schrodinger equation,
↑ + zz2-E4 =0

,( zm
m (

satisfying the boundary conditions implied
by that scattering solution.

This problem is conveniently solved on

parabolic coordinates ,
defined :

3 = n + z= r(i +cost) 3 both go fromn= r- z = r(l- cos0) 0-0.

C = 9.
->

With :

↑ 4 = (5) + (2) + i (i +)t]

ande (5 +r)dsdude.

Thus : V =z Ar=



The SE isTherefore
- 1024+ 4 = E4

- (tu) p24 - Q4:EH)4.-

4 2

Usual trick : assume a separable solin :

4= u/s)VIR) since
And then plugin/divide...

&

i-
This : Q 1 +Q2=Q (all constant ! )

-> (su/(s))1 + (i - Q
.

+ Es) u(s) = 0 ①
und (nv(n))'+ (in- Q2 + En) (in) =0

.

Once we solve these two equations,
we'll have

our solution. But let's consider again the

scattering B.

C. 's
,
namely

Preo - scattered+ = eik(5 -n)
stuff

Since we have azimuthal symmetry, let's
also select just mo to solve



By defining 4 = eihz 15 ,
2)

,
we see

that our sep, sol in looks like

4 =
=kS f

, (s)fz(n)2z
-2
u(s) V(n)

So rewriting the DES in O in terms of

These new solutions gives :

scratch
(s [ize f, +ef,B) + (Es - Q.)e+, :0

work -> In f + + 5 f+IS + Eff" + - Q , ( =0

-> Sf ,

"
+ (1 + ik)f ,

) + (
*

- Q , )f ,
= 0

->3f ,

"

(s) + (1 + iks)f,(s) +( - Q , ) f, (5) =0

and nfz" (4) + 11 - i kn)fe(n) +1- - Q2)fz (4) =0
.

These are known defly-Q's !

y =
- iks- 3 = 4/- ik

-"(5)
=fil :de

- We get

y(, "(y) + (1 - y)f,,(y) - ( - 2)f , (y) =0



This equ ,
and the similar one for fe

,
is

the defy-@ definingthe CONFLUENT
HYPER GEOMETRIC FUNCTION

->
f

,
= F(( - Q - (j - ibS)/I ~

c b X
resea
This is a very useful special function
in Rydberg physics land elsewhere), so

it deserves some special attention.

To get the notation straight, Flaib ; x)
obeys the DE

XF"(a
,

b
,x) + (b -x) F'(a , b

, x) -aF(a , b
, x) = 0

.

You can easily check that :

#(a; bix) = 1 +
..

2

[ +b-a(t(a+k)xk-b- a)k=0 ↑ (b+ #) 4 !

satisfies the DE /at least the constant

part is easy to check).

Note : this is the regular solin as xeo,
-

and b cannot bea negative integer).



To check if our solutions obey the

symptotic boundary conditions , wewih

need the an emptotic behavior
ofthis !

Let's use some -fire identities...

M(z + 1) = zπ(z) and
I

So
a -

1 + k() -t)b
-a-

dt

#balNath
2

So : A = % +a - (1 +)
b--1Ext
-

x+
1

this is e

-> FlaibixtGet
="X"

We want the xo a symptotic form.
To get this,

let's split up the integral into two parts :

F =X 9 exa (1 -+ (b
- a +

d+

I

+ XS x+

+
a - 1(1 -+)b

- a+

d+

-

al
In green : let t = -W/X.

In blue: let t = 1 - u/X



W du->FX
,

a du

&

Woohoo ! We now have an asymptotically
small parameter, wh

and MX
,

in both integrals !

-> insert the binomial expansion
(1 -y(a -1 - (a+)4 + ....

-

We actually only need the leading order term 1
because this gives us some very friendly
integrals :

·D-UuP
+
du=Ml

Thus : as X -*,

F - X( - x)
- "

↑(a) + xx
+ a -

"e" +(b-)

= (b) xe
-

This is a very important propertyof

Flaib ; x) !!
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Let's return to f
, fu ,

which are :

8. (5)= F(' - akj1j - ik5)

fz(u) = F((2 + 02 ; 1 ; inn)
As E

,
10 we can inspect our solution to

see if it obeys BL's !

T(l)ukvin)-
↑ (12 + i) ↑ (12 - [Q1(2) Tn"2-[@p(/z + [@2)

- "
2+ Q

· [PItti) like) -IQUER(lb-2) (ribs) -iRS/]
· [P(-) ( - ihn) +IOI-i((k + 12) (in): un/2]
Yikes

,
what a mess ! But recall : the soly

should look like :

↑- eih +f()ei
[2(5-4)

+ flat ste 2

This only has going waves in !
So everything in the messabone which

= 5
has e in MUST60 !

+)



Thus we know what Q
, must be:

Q1 = ik +nik
,

n = 0, 1 ,
2

...

-

2

I keep in mind : what we are really doing is

making me that R O .

Bua

-funcs only have pees ,
no zeros ,

the denom

must blow the func up ! And this happens
when 1/2 +2=

-Q = + nik + 1 (
When we impose this condition ,

we get
the surviving 3-dependent termto be :

-( - ikS)"zikS12 -

But once again our BCs say : no ! There

are no "extra powss" of 3 at Jesu !

So n
= 0.

=

Thus Q ,
=I and Q2 must then be

Q2 = Q-ik/z .



After all that pain we finally obtain :

4 =u((vIntinLikuR
- - iQ/k

(s+4)(ik)
M) - 1Q(k)

or , in a more familiar form,

-> 2
ikz
(n)

: Qu
+ 2

Thm (2)
-iQ1 (i) -iQI

-

Un

ikz-[QuR ihn-2Q
- iQ/k

-

or : 2
I

K + e

In+ (44)
-

ikn M(-iQ(u) *

Notice these r-dependent phoses -

a distinctive

land often annoying) feature of the Coulants

potential , but one which is ultimatelyIrrelevant
for most results as it is "just" a phase.

-

From we can read off the scatt , umplitude
- iQ/k

f(t):-cost
Int

Hello



And with this
,
the differential cross section

which is

dS exactlymeta!

-

-

So, that was a lot of work to solve the

problem of 2-body Coulomb scattering for

positive collision energies E = K
2
What could

I

this possibly have to do with Rydberg Spectra?

One consistent theme I want to develop in

this course
,
and which will be both illustrated

by and a key tool in developing our Rydberg
theory ,

is that

Aulisions
and

spectroscopy
-

are very related,
even unified

, concepts!



We will often see how scattering physics,
such as phase shifts, connect to board state

physics , such as their energy levels . Learning how

to extract these links will be key!
In the present case ,

we will observe that

poles of the scattering amplitude(or S-matrix)
determine the bound state energies !

To see why ,
let's analytically continue to Eco

by setting k-ik Ik>

- E = - K2/2
.

Doing this in our scattering solution gir es

4-Ne+ flik
,d (

↑
this diverges when ze-a ,

which is

simply t acceptable !
-

To fex this
,

we need flik,e) to diverge
even better! -Mi++0

.

Recall :
f(t)=-cost (kY

- iQ/

Hello



This implies that ItQ/K is a negative
int

. or zero

> 1 + Zz = -In-1)
,

n=,

-> kn=

-

Whata
coincident,where

a

formula yet again !

~tomb Scattering in pherical cardsI

Motivation : parabolic cords were very convenient

to describe scattering,
but atoms one still

spherically symmetric ! So when we really want

to solve more complicated problems, especially
for non-hydrogenk atoms ,

we will need to

do this in sph . cords.



The radial solns obey
- Eu"(r) + (e E -

k2

Ju(r) = 0 ①l 2 R

A good way to solve equations such as this

one is to factor out the long and short
-

range behavior we expect the solin to have :

Merl-ret
, reo

Melrie give , red
->Ue(r) = re + /eikr Fer
-

Putting this into $ gives ,

after some algebra,
X F"(x) + (21 + 2 - x)Fe(x) - (l+ 1 -

i =(2) Fe(x) = 0
,

where x = -zikr
.
ASTOUNDINGLY

,
this is

just the equation for our old friend
,
the Conf-

Hypo-Geo-Func again ! So we already
know the radial solution :

We(r) = reHeihrF(l + -E ; 21+ 2; - Likn) ·



Recoll the asymptotic form we derived :

+/2
F(u

, b
,x)-> l*Mb)ab

M(u)

ekr
-> Mel Pil +2) r

+[Litr-e-e
- N(l .+ 1 - i 7()

#Liheifor reasons,

we call this the

energy-analytic solution forI.El

we arewittingmarysi) new

-> Seren (2l+-
(2k(e+1 [N(l+ ) -iz/2)+ (l+ 1 + :z/2)]"2
↳

InThr-e-1 eite -πz/2k
· Lear

+ iz

T 2 -

-

- ihr-iz/ln Ihr

(i)
-e - 1 - 25

-Tz(2k1+ C
-
-

2-
R

e-
- [π/2 [lπ/2

( : )
e- = (ei

T (2)
- e - 1

= cil/2 E = e- /T
/2 - iltlz

C - i)
-h+

= (e
-+(a)

- e -

=
-idH/2

2
=

2 -/i

↓ fir) =
e

- z/2k i(2d+2)
(2k)e +

1p 17 (l+ 1 +27/m))
·Sin[kr +Eluzur- +]



Later on we will want the so-called

"energy-normalized "form of this solution,
which has to look like sin (staff) asreo.

Clearly
,
this is satisfied by

fae(r) : Be fer
where

Ba =(
Brilliant ! While we are here

,
we will want to

extend this solution to negative energies again
using analytic continuation

--

fir = re+ 1
- Er

F(l+ 1 -E/
,
ze + 2

, 2kr)
-> Nzerhretienz-e-e-k↑ (e + 1 + =(k)

+ (2kr)"
Fix-e-1 kn

Ack
!
-+-z]

.

This is again NOT &K !!



So
,
let's kill it off ! First , we define E = U

.

is youn
be our "effective quantum

number".

We proceed using yet another T-func identity,
M(z)t(1-z) =I ->

Sintz M(z)n(1 -z) =
.

sinTiZ

This gives :

O -

-

en

fell)-412eze"12k)-Vr-Unte- -
-

&

# (l+ 1 - v) - z = z = v-2

-----: level + 124) 12bit
+

-W
- - - 2

- 2 2"2
--

n(l + 1 +2) 1 ]
=e +2) Re)"That' seller -e

H 1/2

- eins-e)(21)2reFri.-↑ (l+1 + 2) F(l + 1 + 2)"2

al- I-

1=inter SeSI & "2
"

-

- -
iM(v-e))V

-
kr + 1

Asa -es)]
Dae



And so
,
finally :

fil)
en
A (HRT" [sinnir-eJerVD

-

elture-

krDae]

with

Ase=HIt

Dae=-es)"2

Ok! Now we see how to remove these

pesky divergences :

siniT(V-e) = 0 -> Ve = integer
- nr+l+ 1

I recoll : Fr =v

->
z

k = -E= -  -



V)l is important to remove the chance

of F(U-e) blowing up ,
leaving us with

no solution . Going back to the definof

I-
,
U

,
etc

,
we see that we have once

again obtained

-

2
E = -:-

2(mp +l + 1)2

Notice a weird feature of this asymptotic
form : everything was real until the end,
when suddenly we got an eitt-el !

The reason for this is rather messy...

involving branch outs and otherannoying
things... So we argue on physicists that our

real solution to a real DE should indeed
-

be real
,
and take e

iπ(r -1)
eCoS(N -2) .



To treat scattering from modified Coulomb

potentials ,
we need the 2nd solution to

this 2nd-order DE ! -> importantly ,

this

must be linearly independent tf to be any

good !

remember : while -> ret
as reo,

the other sol'n goes like gerl.

One thing we could try ,
to define I , would

be to define 15-1-1
--

Note that this maps feg as -o and
-

also leaves the SE unchanged , as

((l + 1) + ( - l - 1)) - e- 1 + 1) + (+b(e) .

But
,
the power series solution that we used

for Flaibix) was proportional to

↑(b) = 4(21+2)
- e -,

↑( -2)

This blows
up for integer I , which is unfortunately

the type ofI we are interested in
.
Ack !



It's rather tedious to derive this end
Solution .

WRB (to be covered later, maybe
yields a cate solution rather easily.

In the classically allowed region ,
ricrarz,

we ware

fwhrr = (c)" sin (Srcrs dr + (4) ↑

-

from connection
for mul

This soli is regular at r = 0 and is a smooth

function of E at small v.

10 .

K .

u. larger !)
At so this becomes (using more WRB formalis

waArlen [sinperi - cospneus
&

whB
=Chrd=-

↓mmsempawith ratfebehairaa
-
-



At large r
,

our 2nd linearly indep
solln should have the some amplitude as

feli , but with a 00 phose lay-
think of an 1= 0 zero potential case where

the two solis are sin
, cos. .

Here,

wel to Bekr simp + Vpuny
And as it turns out

,
this matches the

exact result verywell (in all the ways that

matter , as we'll see!
remember :

For completeness : cite-H-i(n)
n(l + 1 + i(k)

↓

yaer)->
- Enos(n-enzur-e + re]

E ↓>· lik)
*= [cos 1v-e) e

**

~-
~ Dae

- SinHIV-e) krpVBar
for 20
-



We now have all the preliminaries out of

the
way . It's time to treat a non-hydrogen

atom
,

: . e
. solve the MODIFIED Coulomb

potential to obtain energy levels
of

, say,
Rb

.

The edea is : within the independent electron
model

, an electron in a multi-electron atom

sees the potential :

M No

VIr)-
r

↓ --------At large r the other es

IS- ! screen the core and our

electron sees a pure
"r

I Coulomb potential .
-Elr Inside all shells is sees the

! full nucleus of I protons.

EverywhereIn between
,
the potential is

complicated !



Aside : one can fit model potentials
veryaccurately to exp . energy levels :

order to describe this complicated physics,
see Morinescu

, Sadeghpour, Dalgarno PRA19482
(1994)

They use I

VIr) = -"r (long-range Cowlamb)
- (z- 1) e arir Ishort-range Coulomp)
+ (az + ayr)e

- 2
ladditional parameters)

- Cert /1- expl-viral) (polarization
care polarizability

potential

and this works very well ifl-dependent he one

used. But our potential can actually be

the much more gener, yet conceptually simpler :

VIr) =

icated
, v No

E - Yr
, wato .



We have already solved the SE
,

at

any energy but before applyingony
BCs

,
for the pure Coulomb parti

Ase faelr) . Bae Ize(r)

=AfaerglaafNow Ne [faeclcosdee-gamers sindae)B

Inside
,
the solution wh VIr) = complicated is

something complicated, but in principle
solvable :

wel) = Welt).

A continuous of exists when we match

-ogarithmicderivatives at ro :

(h) gasina
oth at r= No-



After somerearrangement,

tansaeW, I
Since futosi)) and geocos)('Coulomb

phaseshift

Use- En [sin) (coss + cost (sing] modified
Coulant

↓
trig identity S L phaste

↓ shift.
= Ensin(kr + Yenzar-E+ re + Sae)

.

So: our solution
,
at very large r ,

is a

phase-shifted sire wave !

A comment : one thing that we have done

under therey in our derivation of fig
is to ensure that theyore smooth and

-

almost-analytic functions wherever possible.

The mathematical reasons for this can be

a but obscure /see the Senten paper
ref'd

previously for more details)
,
but this is

crucial for us as we can treat the phase
shift also as a very smooth function of E.

j --

- j



complicated IA Picture-

E ,

for 10
a

.
u.

See :

ver I I
matching

ma

much-> r

E =
-0 .

05

- "r

nv = 3

St- -o
.

-
our outer

soll is just

a lineer comb.

of f + g and

I does not get obes

I BCs at infinity...

(

(Vcr(((E at small r
, so Welr) is nearly

~- independent !

And thus : See must also be very
smooth as a function of energy !



We can go ahead and analysially
continue our whole scattering solution

from 270 to sco
, obtaining

Kael [sin(iv-el +be) r-very+

-cos (H(V -e) + Sae) re-Kro)
The full solution ,

at twoarbitrary energies sco,

must look something like :

exn diverge !
M 1 to Bad !

->I~ r

- -
- -a,

(r)~
-I- -

- -

Uz(r)- -

~a& exp diverge!

so nearly E-indep rBad
that Sae hardly
changes. And we have no rapide-
fluctuations because no BCs Dre !



looking at our long-range sola ,
we see

that expo growth is proportional to

sin [H+ (v-e) + See]
Now ,

the BC and shut off

this we presen divergence .

This will now

lead to rapid energy-dependence in some

-

parameters (think
- V is currently a continuous

parameter and1t/ the energy must become

discrete ! ) but the key physics of the "complicated"
part is contained in essentially a few numbers.

-

- (v -el +See = NriT

-> n = l+ un = U + Sae/i

or : Ene-To-Mse)2
-

By golly ,
we did it again ! And better !



· some notes :

-> Mae = Saelit in the QUANTUM

DEFECT!
-> For alkali atome : See is constant

(to ~3 sigfigs) already from to on

So...

- Infinite numbers of bound states are

compactly described by one parameter,
which is closely connected to the

scattering phase shift !

- Core of QPT : we try our DARNDEST to

put everything in terms ofonalyik/

smooth functions of energy,
and don't

apply all BCs (which give rapid energy
dependence) unt) the bitter end.

-> Mae = O for sufficiently high I/we cover

polarization effects later) because
e(l +1) shields the e from the cre.
-

2r2



Now to return to "phenomenological
evidence for SUSY".

In his comment on this PRL/PRL26 (1986)),
Rau points out that comparison of Rydberg

series is kind of silly to do via energies ; it

should really be done using quantum defects.

And here
, Ms = 0 . 4 for L and

Ms = 0 for H
.

These are not similar !! Even though
the transition energies Rostelechy + Nieto

mention seem to get closer , 0 . 4 never gets
-

close to 0.

Furthermore, the agreement blu d states is

little more than an acknowledgement that
Mex ~O.

The authors do reply, in that save reference.

See what you think !


