Lecture 3
22 Apr. '24
We are going to compute the spectrum of a Ryd atom in a rather roundabout way, fur reasons that will become clear later. So let's just get started with...

TWO-BODY COULOMB SCATTERING
 wave

Scattered wave function going to a detector
Asymptotic wave function describing this scenario:

$$
\psi(\vec{r})_{r \rightarrow \infty}=e^{i k z}+f(\theta, k) \frac{e^{i k n}}{r}
$$

We want to obtain a solution of the Schödinger equation,

$$
\left(\frac{\vec{p}^{2}}{2 m}+\frac{z_{1} z_{2}}{r}-\frac{k^{2}}{2}\right) \psi=0
$$

Satisfying the boundary conditions implied bey that scattering solution.

This problem is conveniently solved in parabolic coordinates, defined:

$$
\left.\begin{array}{rl}
\xi=r+z=r & (1+\cos \theta) \\
n=r-z=r & (1-\cos \theta)
\end{array}\right\} \text { both go from } 0 \rightarrow \infty .
$$

U: th:

$$
\nabla^{2} \psi=\frac{\psi}{\xi+n}\left[\frac{\partial}{\partial \xi}\left(\xi \frac{\partial \psi}{\partial \xi}\right)+\frac{\partial}{\partial n}\left(\eta \frac{\partial \psi}{\partial \eta}\right)+\frac{1}{4}\left(\frac{1}{\xi}+\frac{1}{n}\right) \frac{\partial^{2} \psi}{\partial \psi^{2}}\right]
$$

and

$$
d V=\frac{1}{4}(\xi+n) d \xi d n d \varphi .
$$

Thus: $V=\frac{z_{1} z_{2}}{r} \equiv Q / r=\frac{2 Q}{\xi+n}$.

The SE is tharetare

$$
\begin{aligned}
& -\frac{1}{2} \nabla^{2} \psi+\frac{2 Q}{3+n} \psi=E \psi \\
& \rightarrow \frac{(\xi+n)}{4} \nabla^{2} \psi-Q \psi=-\frac{(\xi+n) \psi}{2}
\end{aligned}
$$

Usual trick: assume a separable solis:

$$
\psi=u(\xi) V(n) e^{i m \varphi}
$$

And then plug in / divide...

$$
\begin{aligned}
& \frac{1}{u(\xi)}\left(\xi u^{\prime}(\xi)\right)^{\prime}+\left(\frac{-m^{2}}{4 \xi}+\frac{E \xi}{2}\right)<Q_{1} \\
&+\frac{1}{V(n)}\left(\eta v^{\prime}(\eta)^{\prime}+\left(-\frac{m^{2}}{4 n}+\frac{E n}{2}\right)<\right. Q_{2} \\
&=Q
\end{aligned}
$$

Thus: $Q_{1}+Q_{2}=Q \quad$ (all constant!)

$$
\begin{align*}
& \rightarrow\left(\xi u^{\prime}(\xi)\right)^{\prime}+\left(-\frac{m^{2}}{4}-Q_{1}+\frac{E}{2} \xi\right) u(\xi)=0 \tag{1}\\
& \text { and }\left(n V^{\prime}(n)\right)^{\prime}+\left(-\frac{m^{2}}{4 n}-Q_{2}+\frac{E}{2} n\right) V(n)=0
\end{align*}
$$

Once we solve these two equations, well hare our solution. But let's consider aglein the scotherivg B.C.'S, namely

$$
\psi_{r \rightarrow \infty} \rightarrow \underset{\substack{\text { scattered } \\ \text { stuff }}}{e^{i k z}} \Gamma=e^{i \frac{k}{2}(\xi-n)}
$$

Sue we have azimuthal symmetry, let's also select Just $m=0$ to solve.

By defining $\psi=e^{\text {ihz }} \tilde{\Phi}(\xi, n)$, we see that our sep. Sol'n looks ike

$$
\psi=\frac{e^{\frac{-k}{2} \xi} f_{1}(\xi)}{n(\xi)} \frac{e^{-\frac{i k n}{2}} f_{2}(n)}{v(n)}
$$

So rewriting the DEs in (1) in terms of there new solutions gives:

$$
\begin{aligned}
& \left(\xi\left[\frac{i k}{2} e^{-} f_{1}+e^{-} f_{1}^{\prime} D\right)^{\prime}+\left(\frac{\xi}{2} \xi-Q_{1}\right) e^{-} f_{1}=0\right. \\
& \rightarrow \frac{i k}{2} f_{1}+f_{1}{ }^{\prime}+\xi\left(\frac{-h^{2}}{4}\right) f_{1}+\frac{i h \xi_{3}}{2} f_{1}^{\prime} \\
& +\xi \frac{h}{2} f_{1}^{\prime}+\xi f_{1}^{\prime \prime}+\left(\frac{h^{2}}{4} / \xi-Q_{1}\right) f_{1}=0 \\
& \left.\rightarrow \xi f_{1}^{\prime \prime}+\left(l_{1}+i k \xi\right) f_{1}\right)+\left(\frac{c}{2}^{x}-Q_{1}\right) f_{1}=0 \\
& \rightarrow \xi f_{1}^{\prime \prime}(\xi)+(1+i k \xi) f_{1}^{\prime}(\xi)+\left(\frac{i k}{2}-Q_{1}\right) f_{1}(\xi)=0
\end{aligned}
$$ and $n f_{2}^{\prime \prime}(n)+(1-i k n) f_{2}^{\prime}(n)+\left(-\frac{i k}{2}-Q_{2}\right) f_{2}(n)=0$

These are known drffy-Q's!

$$
\begin{aligned}
y=-i k \xi \rightarrow \xi= & y /-i k \\
f^{\prime \prime}(\xi) & =f^{\prime \prime}(y) \cdot \frac{d^{2} y}{d \xi^{2}} \\
& =f^{\prime \prime}(y) \cdot(-i k)^{2}
\end{aligned}
$$

\rightarrow We get

$$
y f_{1}^{\prime \prime}(y)+(1-y) f_{1}^{\prime}(y)-\left(\frac{1}{2}-\frac{Q_{1}}{i k}\right) f_{1}(y)=0
$$

This equ, and the similar one for f_{2}, is the diffy-Q defining the CONFLUENT HYPER GEOMETRIC FUNCTION

$$
\rightarrow f^{f_{1}}=F(\underbrace{(1 / 2-\frac{Q_{1}}{\tau k} ; \underbrace{j}_{b} \underbrace{i-i k \xi}_{x})}_{a}
$$

This is a very useful special function in Rydberg physics land elsewhere), so it deserves some special attention.

To get the notation straight, $F(a ; b ; x)$ obeys the DE

$$
x F^{\prime \prime}(a, b, x)+(b-x) F^{\prime}(a, b, x)-a F(a, b, x)=0 .
$$

You con easily check that:

$$
\begin{aligned}
F(a ; b ; x) & =1+\frac{a}{b} \frac{x}{l!}+\frac{a(a+1)}{b(b+1)} \frac{x^{2}}{2!}+\ldots \\
& =\frac{\Gamma(b)}{\Gamma(a) \Gamma(b-a)} \sum_{k=0}^{\infty} \frac{\Gamma(b-a) \Gamma(a+k)}{\Gamma(b+k)} \frac{x^{k}}{k!}
\end{aligned}
$$

satisfies the DE (at least the constant part is cosy to check).
(Note: this is the regular solln as $x \rightarrow 0$, and b cannot be negative integer.

To check if our solutions obey the cesymptotic bocendeurg conditions, wewll need the asymptotic behavior of this!

Let's use some Γ-fire identities...

$$
\begin{aligned}
& \Gamma(z+1)=2 \Gamma(z) \quad \text { and } \\
& \frac{\Gamma(b-a) \Gamma(a+k)}{\Gamma(b+k)}{ }^{\prime \prime} A^{\prime \prime} \int_{0}^{1} t^{a-1+k}(l-t)^{b-a-1} d t
\end{aligned}
$$

So: $\sum_{k} A \frac{x^{k}}{k!}=\int_{0}^{1} t^{a-1}(1-t)^{b-a-1} \underbrace{\sum_{k} \frac{(t x)^{k}}{k!}}_{\text {this is } e^{x+} \text { ! }} d t$

$$
\rightarrow F(a ; b ; x)=\underbrace{\frac{\Gamma(b)}{\Gamma(a) \Gamma(b-a)}}_{=\lambda^{\prime \prime}} \int_{0}^{1} e^{x t} t^{a-1}(1-t)^{b-a-1} d t
$$

We want the $x \rightarrow \infty$ cesymptotic fan. To get this, let's split up the integral into two parts:

$$
\begin{aligned}
F=\lambda \int_{0}^{-\infty} & e^{x t} t \int_{-\infty}^{a-1}(1-t)^{b-a-1} d t \\
& +\lambda \int_{-\infty}^{1} e^{x t} t^{a-1}(1-t)^{b-a-1} d t
\end{aligned}
$$

In green: let $t \equiv-w / x$.
In blue: let $t \equiv 1-u / x$

$$
\begin{aligned}
\rightarrow F= & \lambda(-x)^{-a} \int_{0}^{\infty} e^{-\omega} \omega^{a-1}\left(1+\frac{\omega}{x}\right)^{b-a-1} d \omega \\
& +\lambda x^{a-b} e^{x} \int_{0}^{\infty} e^{-u} \omega^{b-a-1}(1-u / x)^{a-1} d u
\end{aligned}
$$

Woohoo! We now have an asymptotically small parameter, ω / x and u / x, in both integrals!
\rightarrow insert the binomial expansion

$$
\left(1-\frac{u}{x}\right)^{a-1} \rightarrow 1-(a-1) u / x+\ldots
$$

We actually only reed the leading order term 1 because this gives us some very friendly integrals:

$$
\int_{0}^{\infty} e^{-u} u^{p-1} d u=\Gamma(p)
$$

Thus: as $x \rightarrow \infty$,

$$
\begin{aligned}
E & \rightarrow \lambda(-x)^{-a} \Gamma(a)+\lambda x^{+a-b} e^{x} \Gamma(b-a) \\
& =\frac{\Gamma(b)}{\Gamma(b-a)}(-x)^{-a}+\frac{\Gamma(b)}{\Gamma(a)} x^{a-b} e^{x}
\end{aligned}
$$

This is a very important propertyof

$$
F(a ; b ; x)!!!
$$

Lecture 4 starts here! Apr 21, 24 Let's return to f_{1}, f_{2}, which are:

$$
\begin{aligned}
& f_{1}(\xi)=F\left(1 / 2-Q_{1} / i k j 1 ;-i k \xi\right) \\
& f_{2}(n)=F\left(1 / 2+Q_{2} / i k ; 1 ; i k n\right)
\end{aligned}
$$

As $\xi, n \rightarrow \infty$ we con inspect ow solution to see if it obeys BC's!

$$
\begin{aligned}
& u(\xi) v(n) \rightarrow \frac{\Gamma(1)}{\Gamma\left(1 / 2+i Q_{1}\right) \Gamma\left(1 / 2-\tau Q_{1} / k\right)} \cdot \frac{\Gamma(1)}{\Gamma\left(1 / 2-i Q_{2}\right) \Gamma\left(1 / 2+\tau Q_{2}\right)}
\end{aligned}
$$

Yikes, what a mess! But recall: the soln should look like:

$$
\begin{aligned}
& u \rightarrow e^{i h z}+f(\theta) \frac{e^{-k n}}{r} \\
& \rightarrow e^{\frac{i k(\xi-n)}{2}}+f(\theta) \frac{e^{\frac{-k}{2}(\xi+n)}}{\frac{1}{2}(\xi+n)}
\end{aligned}
$$

This only has outgoing waves in ξ !
So everything in the mess above which has $e^{-\xi}$ in it MUST GO?

$$
\rightarrow \Gamma\left(1 / 2+\frac{i Q_{1}}{k}\right) \rightarrow \infty
$$

Thus we know what Q_{1} must be:

$$
Q_{1}=\frac{i k}{2}+n i k, \quad n=0,1,2 \ldots
$$

(heep in mind: what we are really doing is making sire that $\frac{\Gamma\left(1 \mathcal{I}_{2}-i Q_{1} / k\right)}{\Gamma\left(1 / 2+2 Q_{1 / k}\right)} \rightarrow 0$. But since
T-funcs onlyhare poles, no zeros, the denom must blow the func up!. And this happens when $l / 2+\frac{2 Q_{1}}{u}=-n$

$$
\left.\rightarrow \overline{Q_{1}}=+n i k+\frac{k i}{2} .\right)
$$

When we impose this condition, we get the surviving ξ-dependent term to be:

$$
\sim(-i k \xi)^{n} e^{i k \xi / 2}
$$

But once again our $B C$, say: no'. There are no "extra power" of ξ at $\xi \rightarrow \infty$! So $n=0$.

Thus $Q_{1}=\frac{c k}{2}$ and Q_{2} must then be

$$
Q_{2}=Q-i k / 2
$$

After all that pain we funoly obtain:

$$
\begin{aligned}
\psi=u(\xi) \cup(n) & \xrightarrow{\xi, n \rightarrow \infty} \frac{e^{\frac{i k}{2}(\xi-n)(-i k n)} \frac{\Gamma Q / k}{\Gamma(1+\tau Q / k)}}{} \\
& \frac{+e^{\frac{i n}{2}(\xi+n)}(i k n)^{-1-i Q / k}}{\Gamma(-\tau Q / k)}
\end{aligned}
$$

Or, in a more familiar form,

$$
\begin{aligned}
& \text { Or, in a more familiar form, } \\
& \rightarrow e^{i k z}(n)^{i Q / k}+\frac{e^{i k n}(n)^{-i Q / k}(i n)^{-i Q / k}(-i k)^{-i Q k}}{i k n} \\
& \text { or: } e^{i k z+\frac{i Q \ln n}{k}}+\frac{e^{i k n-\frac{2 Q}{k} \ln n}}{i k n} \frac{\Gamma\left(1+\frac{i Q}{\hbar}\right)}{\Gamma(-i \theta / k)}\left(k^{2}\right)^{-i Q / k}
\end{aligned}
$$

Notice there r-dependent phoses - a distinctive (and often annoying) feat ire of the Coulomb potential, but one which is ultimately 2 rrelecent for most results as it is" just" a phase.

From $*$ we can read of the scats. umpirtude.

$$
f(\theta)=\frac{1}{i k(1-\cos \theta)}\left(k^{2}\right)^{-i Q(k} \frac{\Gamma\left(1+\frac{i Q}{k}\right)}{\Gamma\left(-\frac{\pi Q}{k}\right)} e^{-\frac{2 i Q}{k} \ln (1-\cos \sigma)}
$$

And with this, the difleoutial coops section

$$
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}=\frac{Q^{2}}{\left.4 k^{4} \sin 4 \theta / 2\right)}, \text { which is } \text { excectly }
$$

the classical Rutherford formula!
So, that was a lot of work to solve the problem of 2-body locelomb scattering for positive collision energies $E=\frac{k^{2}}{2}$. What could this possibly have to do with Rydberg spectra?

One consistent theme I wart to develop in this course, and which will be both illustrated by and a hey tool in developing our Rydberg theory, is that
collisions
spectroscopy
ore very related, even unified, concepts.

We will often see how scattering physics, such as phase shifts, correct to bound state physics, suchas their energy levels. Learning how to extract these lunk will be key!
In the present case, we will observe that poles of the scattering amplitude (or S-matrix) determine the bound state energies!
To see why, let's analytically continue to ELO by setting $k \rightarrow i K \quad(K>0)$

$$
\rightarrow E=-K^{2} / 2
$$

Doing this in ow scattering solution gives

$$
\psi \rightarrow N\left(e^{-k z}+f(i k, \theta) \frac{e^{-k n}}{r}\right)
$$

this diverges when $z \rightarrow-\infty$, which is simply not acceptable!

To fix this, we need $f(i \mathbb{R}, \theta)$ to diverge ever better! $\rightarrow \Gamma\left(1+\frac{i Q}{i K}\right) \rightarrow \infty$.
Recall:

$$
f(\theta)=\frac{1}{i k(1-\cos \theta)}\left(k^{2}\right)^{-i Q / k} \frac{\Gamma\left(1+\frac{i Q}{k}\right)}{\Gamma\left(-\frac{i \alpha}{k}\right)} e^{\left.-\frac{i i \alpha}{k} \ln (1-\cos)^{c}\right)}
$$

This implies that $1+Q / k$ is a negative int. or zero

$$
\begin{aligned}
& \rightarrow 1+\frac{z_{1} z_{2}}{k_{n}}=-(n-1), n=1,2, \ldots \\
& \rightarrow k_{n}=\frac{z_{1} z_{2}}{n} \\
& \rightarrow E_{n}=-\frac{z^{2}}{2 n}, \text { where }-z=z_{1} z_{2}
\end{aligned}
$$

What a coincidence! It's the Rydberg formula yet again!

Coulomb Scattering in spherical cords
Motivation: parabolic coords were very convenient to describe scotterky, but atoms cere still spherically symmetric! So when we really wast to solve more complicated problems, especially fer nen-hydrogenic attorns, we will need to do this in sph. Lords.

The radial sol'us obey

$$
\begin{equation*}
-\frac{1}{2} u_{l}^{\prime \prime}(r)+\left(\frac{l(l+l)}{2 r^{2}}-\frac{z}{r}-\frac{k^{2}}{2}\right) u_{l}(r)=0 \tag{1}
\end{equation*}
$$

Agood way to solve equations such as this one is to factor out the long and short range behavior we expect the solin to have:

$$
\begin{aligned}
& u_{l}(r) \sim r^{l+1}, \quad r \rightarrow 0 \\
& u_{l}(r) \sim e^{i k r}, r r \rightarrow \infty \\
& \rightarrow u_{l}(r)=r^{l+1} e^{i k r} F_{l}(r)
\end{aligned}
$$

Putting this into (1) giver, after some algebra,

$$
x F_{l}^{\prime \prime}(x)+(2 l+2-x) F_{l}(x)-(l+1-i z / k) F_{l}(x)=0,
$$

where $x=-2 i k r$. ASTOUNDINGLY, this is just the equation for our old friend, the Conf-
Hypo-Geo-Func again! So we already know the radial solution:

$$
u_{l}(r)=r^{l+1} e^{i k r} F\left(l+1-\frac{i z}{k} ; 2 l+2 j-2 i k r\right) .
$$

Recall the asymptotic form we derived:

$$
\begin{aligned}
& e^{-x / 2} F(a, b, x) \rightarrow \frac{\Gamma(b)}{\Gamma(b-a)}(-x)^{-a} e^{-x / 2}+\frac{\Gamma(b)}{\Gamma(a)} x^{a-b} e^{x / 2} \\
& \rightarrow u_{l}(r) \xrightarrow[m \rightarrow \infty]{\longrightarrow}\left[(2 l + 2) r ^ { l + 1 } \left[\frac{(2 i k r) \frac{i z}{n}-l-1}{} e^{2 k r}\right.\right. \\
& \left.+\frac{(-2 i k r)^{-\frac{2 z}{\hbar}-l-1} e^{-i k r}}{\Gamma(l+1-i z(k)}\right] \\
& \text { we call this the } \\
& \text { evergg-analytil solution } f_{E l}^{O}(r) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } f_{E e}^{0}(r)=\frac{2 e^{-\pi z / 2 k \Gamma(2 d+2)}}{(2 k)^{e+1}|\Gamma(l+1+i z / k)|} \\
& \text { - } \sin \left[k r+\frac{z}{u} \ln 2 k r-\frac{l \pi}{2}+\sigma_{l}\right]
\end{aligned}
$$

Later on we will wart the so-called "energy - normalized" form of this solution, which has to look like $\sqrt{\frac{2}{\pi k}} \sin (s+a f f)$ as $r \rightarrow \infty$.

Cleanly, this is satisfied by

$$
\begin{aligned}
& f_{\varepsilon e}(r)=B_{\varepsilon e}^{1 / 2} f_{\varepsilon e}^{0}(r) \\
& \text { where } \quad B_{\varepsilon e}^{1 / 2}=\left(\frac{2}{\pi k}\right)^{1 / 2}\left(\frac{(2 k)^{l+1} \mid \Gamma\left(l+l+\varepsilon^{2} k\right.}{}\right. \\
& 2 e^{-\pi z / 2 k} \Gamma(2 l+2)
\end{aligned}
$$

Brilliant! While we are here, we will want to extern this solution to negative energies again using analytic continuation...

$$
\left.\left.\begin{array}{rl}
f_{l}^{b}(r) & =r^{l+1} e^{-k r} F(l+1-z / k, 2 l+2,2 k r) \\
\rightarrow & \Gamma(2 l+2) r^{l+1}
\end{array}\right] \frac{(-2 k r)^{z / k-l-1} e^{-k n}}{\Gamma(l+1+z / k)}\right)
$$

This is again NOT OCR!

So, let's kill it off! First, we define $\frac{Z}{k}=v_{\sigma}$ \underline{V} is gonnce be our "elective pacrtom ncunker".
We proceed using get another Γ-func identity,

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z} \rightarrow \sin \pi z \Gamma(z) \Gamma(1-z)=\pi
$$

This gives:

$$
\begin{aligned}
& =\frac{\Gamma(2 l+2)\left[(2 k)^{-(2 l+l)}\right]^{1 / 2}(2 k)^{-1 / 2}}{\pi^{1 / 2}}\left[\frac{\sin \pi(v-l)(2 k)^{-2} r^{-2} e^{k r} \Gamma(v-l)}{\pi^{1 / 2}}\right. \\
& \left.\frac{-e^{i \pi(v-l)}(2 k)^{2} r^{\nu} e^{-k n} \pi^{1 / 2}}{\Gamma(l+1+v)^{1 / 2} \Gamma\left(l+(+v)^{1 / 2}\right.} \cdot\left(\frac{\Gamma(v-l)}{\Gamma(v-l)}\right)^{1 / 2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& D_{a e}
\end{aligned}
$$

And so, finally:

$$
\begin{array}{r}
f_{\varepsilon l}^{0}(r) \underset{r \rightarrow \infty}{\longrightarrow} A_{\varepsilon_{e}}^{-1 / 2}(\pi k)^{-1 / 2}\left[\sin \pi(v-l) e^{k r} r^{-v} D_{\varepsilon l}^{-1}\right. \\
\left.-e^{2 \pi(v-l)} e^{-k r} r^{v} D_{\varepsilon l}\right]
\end{array}
$$

with

$$
\begin{aligned}
& A_{\varepsilon l}=\frac{2 \Gamma(l+1+v)}{\Gamma(2 l+2) \Gamma(v-l)}(2 k)^{2 l+1} \\
& D_{\varepsilon e}=\frac{(2 l)^{v} \pi^{1 / 2}}{[\Gamma(l+1+v) \Gamma(v-l)]^{1 / 2}}
\end{aligned}
$$

Ole! Now we bee how to remove these pesky divergences:

$$
\begin{aligned}
\sin \pi(v-l)=0 & \rightarrow v-l=\text { integer } \\
& \rightarrow v=n_{r}+l+1
\end{aligned}
$$

recall: $z / k=v$

$$
\rightarrow k=\frac{z}{n} \rightarrow \varepsilon=-\frac{k^{2}}{2}=\frac{-z^{2}}{2 n^{2}}
$$

$v>l$ is important to remove the chance of $\Gamma(v-l)$ blowing up, leaving us with no solution. Going back to the defile of K, V, etc, we see that we have once again obtained

$$
E=\frac{-k^{2}}{2}=\frac{-z^{2}}{2 n^{2}}=\frac{-z^{2}}{2\left(n_{n}+l+1\right)^{2}}
$$

Notice a weird feature of this asymptotic form: everything was real un U the end, when suddenly we got an $e^{i t t(v-e)!}$

The reason for this is rather messy... involving branch rats and other annoying thimph... So we argue os praygsic?sts that our real solution to a real DE should indie use real, and take $e^{i \pi(v-l)} \rightarrow \cos \pi(v-l)$.

To treat scattering from modified Coulomb potentials, we need the $2^{\text {nd }}$ solution to this $2^{\text {nd }}$-order $D E!\rightarrow$ importantly, this must be ineerly independent to f to be any good!
remember: while $\quad f \rightarrow r^{l+1}$ as $r \rightarrow 0$, the other sol'n goes like $g \rightarrow r^{-l}$.

One thing we could try, to define g, would be to dative $l \rightarrow-l-1$.

Note that this maps $f \rightarrow g$ as $r \rightarrow 0$ and also leaves the SE unchanged, ar s

$$
l(l+1) \rightarrow(-l-1)(-l-1+1) \rightarrow(l+1)(l) .
$$

But, the power series solution that we used for $F(a ; b ; x)$ was proportional to

$$
\Gamma(b)=\Gamma(2 l+2) \rightarrow \underset{l \rightarrow-l-1}{\rightarrow} \Gamma(-2 l)
$$

This blows up for integer l, which is unfortunately the type of l we are interested in. Ack!

It's rather tedious to derive this $2^{\text {nd }}$ Solution. WKB (to be covered later, maybe) yields a cute. solution rather easily.

In the classically allowed region, $r_{1}<r<r_{2}$, we have

$$
f_{a l}^{\text {have }}(r)=\left(\frac{2}{\pi k(r)}\right)^{1 / 2} \sin \left(\int_{r_{1}}^{r} k\left(r^{\prime}\right) d r^{\prime}+\pi / 4\right)
$$

from cornection
This sol'n is regular at $r=0$ and is a smooth function of ε at small r.
(akee. larger!)
A+ $\varepsilon<0$ this becomes (using more WhB formulas)

$$
\begin{gathered}
f_{\varepsilon l}^{w k B}(r)=\frac{1}{r \rightarrow \infty} \frac{\sqrt{\pi k(r)}}{\left.\sqrt{\omega} \sin \beta \frac{e^{k r} r^{-v}}{D^{\omega k B}}-\cos \beta r^{\nu} e^{-k n} D^{\omega k B}\right]} \\
\beta^{\omega k B}=\int_{r_{1}}^{r_{2}} h\left(r^{\prime}\right) d r^{\prime}+\pi / 2=\pi(v-\Omega) .
\end{gathered}
$$

Hum... compare with the exact $f_{\varepsilon \Omega}$ behavior we obtained earlier... this has the some structure!

At large r, our $2^{\text {nd }}$ Irnearly indep. sol'n should have the same amplitude as $f_{r e}(s)$ but with a 90° phase laythink of an $l=0$ zero potential case where the two solus ore sin, cos. Here,

$$
g_{\varepsilon e}^{\omega k(r)} \underset{r \rightarrow \infty}{\rightarrow}-\frac{1}{\sqrt{\pi k(r)}}\left[\frac{\cos \beta e^{k r} r^{-v}}{D^{\omega k B}}+\sin \beta e^{-k n} r^{+v} D^{\omega k \pi s}\right]
$$

And us it turns out, this matches the exact result very well (in all the ways that matter, as well see.)

For completeness:
remember:

$$
e^{2: \sqrt{l} l}=\frac{\Gamma(l+1-i / k)}{\Gamma(l+1+i(l)}
$$

$$
g_{\varepsilon l}(r) \longrightarrow\left\{\begin{array}{c}
-\left(\frac{2}{\pi n}\right)^{1 / 2} \cos \left[h r+\frac{1}{k} \ln 2 k r-\frac{l \pi}{2}+\sigma_{l}\right] \\
\text { for } \varepsilon>0 \\
-(\pi k)^{-1 / 2}\left[\cos \pi(v-l) e^{k r} r^{-v} D_{\varepsilon l}^{-1}\right. \\
-\sin \pi(v-l) e^{-k r} r^{v} D_{\varepsilon e}
\end{array}\right.
$$ for $\varepsilon<0$.

We now have all the preliminaries out of the way. It's time to treat a non-hgdrogen atom, ie. solve the MODIFIED Coulomb potential to obtain every levels of, say, Rb.

The idea 15: within the independent election model, an electron in a multi-electron atom sees the potential:

At large or the other's screen the core and our electron sees a pure $1 / r$ Coulomb potential.

- Ir $($ Inside all shells it sees the full nucleus of Z protons.

Everywhere in between, the potential is complicated!

Aside: one con fit model potentials very accurately to exp. energy levels in order to describe this complicated plysic), see Murinescu, Sudeghpour, Dalgarno PRA 49982
They use 1

$$
\begin{aligned}
& V(r)=-1 / r \quad(\text { long-range Coulomb) } \\
&-(z-1) e^{-a_{1} r} / r \quad \text { (short-range Coulomb) } \\
&+\left(a_{3}+a_{4} r\right) e^{-a_{2} r}(\text { additional parameters) } \\
&-\frac{\alpha_{i} / 2 r^{4}\left(1-\exp \left(-r\left(r_{c}\right)^{6}\right)\right.}{\text { core polarizability }} \text { (porlzation } \\
& \text { potential) }
\end{aligned}
$$

and this works very well if l-dependent a_{i} are used. But our potential can actually be the much more generic, yet conceptually simpler:

$$
V(r)= \begin{cases}\text { complicated, } & r<r_{0} \\ -1 / r, & r \geq r_{0}\end{cases}
$$

We have already solved the SE, at any energy but before applying any $B C_{S}$, for the pure Coulomb pert:

$$
\begin{aligned}
u_{\varepsilon l}^{\text {out }}(r) & =A_{\varepsilon l} f_{\varepsilon l}(r)-B_{\varepsilon l} g_{\varepsilon l}(r) \\
& =\sqrt{A^{2}+B^{2}}\left[\frac{A}{\sqrt{A^{2}+B^{2}}} f_{\varepsilon l}(r)-\frac{B}{\sqrt{A^{2}+B^{2}}} g_{\varepsilon l}(r)\right] \\
& =N_{\varepsilon l}\left[f_{\varepsilon l}(r) \cos \delta_{\varepsilon l}-g_{\varepsilon l}(r) \sin \delta_{\varepsilon l}\right] .
\end{aligned}
$$

Inside, the solution w/ $U(r)=$ complicated is something complicated, but in principle solvable:

$$
u_{\varepsilon_{l}}^{i n}(v)=u_{\varepsilon_{e}}^{i n}(v)
$$

Acontinuous whf exists when we match logarithmic derivatives at r_{0} :

$$
\begin{gathered}
\left.\frac{d}{d r} \ln \left(u_{\varepsilon l}^{i n}(r)\right)\right|_{r=r_{0}}=\frac{u_{\varepsilon l}^{i n l}(r)}{u_{\varepsilon l}^{i n}(r)}=\frac{f_{\varepsilon l}^{\prime}(r) \cos \delta_{\varepsilon l}-g_{\varepsilon e}^{\prime}(r) \sin \delta_{\varepsilon l}}{f_{\varepsilon l}(r) \cos \delta_{\varepsilon l} \cdot g_{\varepsilon l}(r) \sin \delta_{\varepsilon l},} \\
\text { at } r=r_{0} .
\end{gathered}
$$

At er some nearrompement,

$$
\tan \delta_{\varepsilon e}=\left.\frac{W\left(f_{\varepsilon Q}, u_{\varepsilon e}^{i n}\right)}{W\left(g_{\varepsilon l}, u_{\varepsilon l}^{i n}\right)}\right|_{r=r_{0}}
$$

Since $f \vec{m} \sin ()$ and $9 \overrightarrow{r \rightarrow \infty}-\cos ()$,
Coulomb phase shift
modified coulomb phage shift.

Soc our solution, at very, large r, is a phase-shiftel sine wave!
A comment: one thing that we have done under the vul in our derivation of f, g is to ergure that they are smooth and almost-analy肯? funetlos whenever possible. The mathematical reasons far this can be a bit obscure (see the seato paper ref'd previously for more details), but this's Crucial for us as we can treat the phase shits also as a very smooth function ot E.

And thur: Sea must also be very smooth as a function of energy!

We con go ahead and analy-lually contlme our whole scattering solcetion from $\varepsilon>0$ to $\varepsilon<0$, obtaining

$$
\begin{aligned}
u_{\varepsilon l}(r) \underset{r \rightarrow \infty}{ } \frac{1}{v \pi k} & {\left[\sin \left(\pi(v-l)+\delta_{\varepsilon}\right) r^{-v} e^{k r} D^{-1}\right.} \\
& \left.-\cos \left(\pi(v-l)+\delta_{\varepsilon}\right) r^{v} e^{-k r} D\right]
\end{aligned}
$$

The full solution, at two arbitrary energies $\varepsilon<0$, must look something like: exp diverge! Bad!'

Looking at our long-range sol'n, we see that exp. growth is proportional to

$$
\sin \left[\pi(v-l)+\delta_{\varepsilon \Omega}\right]
$$

Now, we impose the $B C$ and shut of this unphysical divergence. This will now lead to rapid energy-dependence in some parameters (think- V is currently a continuous parameter and it (he energy must become discrete!) but the key physics of the "complicated" port is contained in essentially a few numbers.

$$
\begin{aligned}
& \rightarrow \pi(v-e)+\delta_{\varepsilon e}=n_{r} \pi \\
& \quad \rightarrow \quad n=l+n_{r}=v+S_{a d} / \pi
\end{aligned}
$$

or: $\varepsilon_{n e}=-\frac{1}{2\left(n-\mu_{\varepsilon_{e}}\right)^{2}}$.
By golly, we did it again! And better!

- Some notes:
$\rightarrow \mu_{\varepsilon e}=\delta_{\varepsilon e} / \pi$ is the QUANTUM DEFECT!
\rightarrow Far alkali atoms: $\delta \varepsilon e$ is constant (to ~ 3 sig figs) a (ready from $n=50$ on so...
\rightarrow Infinite numbers of hound states one compactly described by one parameter, which is closely connected to the scatteruy phase shift!.
\rightarrow Core of QPT: we try our DARNDEST to put everything in terms of analyilic 1 smooth furetlars of energy, an l don't apply will BCs (which give rapid energy dependence) ont K the biter end.
$\rightarrow \mu a l=0$ for sufficiently high I (we cover polarization affects later) because $\frac{l(l f c)}{2 r^{2}}$ shields the e^{-}from the core.

No ω to return to "Phenomenological evidence for SUSY".
In his comment on this PRL (PRL S6 (1986)), Ran points out that comparison e of Rydberg series is kind of silly to do via energies; it should really be dore using quantum defects.

And here, $\mu_{s}=0.4$ for L_{2} and

$$
\mu_{s}=0 \quad \text { for } H \text {. }
$$

There are not similar!! Even though the transition energles Rostelecky + Nieto mention seem to get closer, 0.4 never gets close to 0 .

Furthermore, the agreement blu d states is little more than an acknowledgement that $M_{l>1} \sim 0$.

The authors do reply, in that save reterenee. See what you think!

