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Abstract

We present a theoretical study of the dynamics of a thick polar epithelium subjected to the action of
both an electric and a flow field in a planar geometry. We develop a generalized continuum
hydrodynamic description and describe the tissue as a two component fluid system. The cells and the
interstitial fluid are the two components and we keep all terms allowed by symmetry. In particular we
keep track of the cell pumping activity for both solvent flow and electric current and discuss the
corresponding orders of magnitude. We study the growth dynamics of a tissue slab, its steady states
and obtain the dependence of the cell velocity, net cell division rate, and cell stress on the flow strength
and the applied electric field. We find that finite thickness tissue slabs exist only in a restricted region of
phase space and that relatively modest electric fields or imposed external flows can induce either
proliferation or death. Our model can be tested in well controlled experiments on in vitro epithelial
sheets, which will open the way to systematic studies of field effects on tissue dynamics.

1. Introduction

During the development of an organism from a fertilized egg, tissues are formed by the collective organization of
many cells that divide or undergo apoptosis. Tissues grow by repeated rounds of cell division [1]. Cell apoptosis
or programmed cell death plays a vital role in maintaining tissue homeostasis, and suppression of apoptosis can
result in abnormal cell proliferation which might turn into cancer [2]. The processes of cell division and
apoptosis occur during all stages of development and cells removed by apoptosis are often continuously replaced
by cell division. Many studies aim to understand how gene regulatory pathways and biochemical signaling are
involved in the regulation and coordination of division and apoptosis [3—5]. In recent times the mechanical
properties of epithelia have been a topic of great interest, and studies have shown how tissue growth is regulated
by local pressure or stiffness [6, 7], and how cell division and apoptosis depend on it [8—10]. The stress at which
cell division balances cell apoptosis on average is called the homeostatic stress of the tissue and in that state the
tissue can remain stationary [11]. Perturbations from the homeostatic state lead to interesting tissue dynamics
that can affect tissue morphogenesis [8, 11]. The concept of stress dependent cell division and apoptosis plays an
important role in the present work.

To better understand the mechanical properties of tissues, different theoretical approaches have been
developed ranging from individual cell based models [8, 12—14] to hydrodynamic continuum descriptions
[15-23]. Coarse grained hydrodynamic models can be used to understand the multicellular dynamics of tissues
atlong wavelengths. In [24], a one component continuum description of tissues has been developed which takes
into account the stress distribution and the flow field generated by cell division and apoptosis and shows that the
tissue effectively behaves as a viscoelastic fluid at long time scales. In [25], a two component fluid description of
tissues is developed, which considers the cells together with the extracellular matrix as one component and the
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Figure 1. Schematic diagram of a thick epithelium placed on a porous substrate. The tissue layer of height / is shown in brown, the two
external fluid components on both sides of the tissue are shown in blue. The double black line features the permeable grid on which
the tissue is placed. It is permeable to fluid and ions but impermeable to cells. The electric potential at both sides of the tissue are
denoted by UL2. The electric field across the tissue is denoted by E and the electric current by I. The difference of the external
hydrostatic pressure P52 corresponds to a normal force per unit area that acts on the grid. The tissue is permeated by a fluid at a

velocity v/,

interstitial fluid as the other. It takes into account the material turnover as a result of cell division and apoptosis
explicitly, but also the permeation of the interstitial fluid through a tissue.

The existence of transmembrane and trans-epithelium electric potentials is textbook knowledge [3, 26, 27].
In the case of plasma membranes, pumps and channels maintain an unbalance between the extracellular and
intracellular ion densities. Sodium ions are kept preferentially outside cells whereas potassium ions are kept
inside by specific pump activity; anions such as chloride ions which maintain electro-neutrality are transported
passively by channels; at steady state, this results in a transmembrane potential, the Nernst potential, on the
order of 50-100 mV, the negative pole being inside the cells. In monolayer epithelia the pumps and channels are
distributed differently between the apical and basal sides. This results in a trans-epithelium potential on the
order of 15-60 mV, the basal part being positive compared to the apical side [27, 28]. Thick epithelia often called
stratified squamous epithelia also generate potential differences on the order of a few tens of mV [29, 30]. Such
tissues are found in many places such as corneal epithelium, lining mucosa of oral cavity, esophagus, anal canal,
ectocervix, vagina, foreskin, the internal portion of the lips and the ascending limb of Henle. In general they not
only develop an electric potential but they also pump fluid in a physiologically relevant way like for instance in
the ascending limb of Henle [29], in rabbit corneal epithelial tissues [31], in insect malpighian tubules [32] and in
corneal endothelium [33]. Furthermore, fluid transport play an important role in mechanical signaling during
organogenesis [34] and if the fluid flow mechanics is altered, gene expression in cells is affected which leads to
disruption in organ development and congenital malfunctions [35—38]. Though a significant amount of
experimental evidence is present in the literature, theoretical studies involving fluid pumping and electric field
actions in thick epithelia is lacking.

Motivated by the existence of this class of tissues, we study the model case of a slab of finite thickness,
homogeneous in perpendicular directions and submitted to the action of both an electric current and a fluid
flow as described in figure 1. We consider both the steady state behavior and the growth dynamics. We propose a
continuum description based on a two fluid framework. The cells are taken as one component, and the
interstitial fluid as the other. Permeation of fluid through the tissue was modeled in [25] in the absence of ion
transport. Here we generalize the theory to ion transport and fluid pumping through the epithelium. We study
how the fluid flow and the electric field modify the natural homeostasis of the tissue.

This paper is organized as follows. In section 2 we introduce the different conserved quantities relevant for a
thick epithelium. The constitutive equations describing tissue material properties and tissue dynamics based on
symmetry considerations are introduced in section 3. A model for a thick permeating epithelium is discussed as
an example in section 4, where we analyze the dynamics and steady state properties. We discuss our findings in
section 5.
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2. Conservation laws

We first present the hydrodynamic theory of a such a tissue that is permeated by interstitial fluid flows in the
presence of an electric field, starting with a discussion of conservation laws.

2.1. Volume conservation

In our coarse grained approach, we define the cell volume as 2°, and the fluid molecular volume as £2/. The
number of cells per unit volume is denoted as # ©, and the number of interstitial fluid molecules per unit volume
is denoted as n/. If the number of cells in a volume Vis N¢, and the number of interstitial fluid molecules N7, then
n° = N°/V,andn/ = N’/V,andwe have V = N°Q¢ + N/Qf [25] or equivalently

nQ + nfQf = 1. (1)

The cell volume fraction is defined as ¢ = n“Q°. The volume fraction of the interstitial fluid is then given
byo/ =1 — ¢ = n/ Q.

The cell number density n© obeys a balance equation which has a flux contribution from cell flows, and also a
source/sink contribution from cell division and apoptosis [24],

O + Dp(nvE) = n°(ka — ko), @

where v, is the cell velocity, and, k;and k, are the rates of cell division and apoptosis respectively. Similarly, the
balance equation for interstitial fluid has a flux contribution due to fluid flow and a source/sink contribution.
During both cell apoptosis and cell division total mass must be conserved. Assuming the tissue is described by
the cell and interstitial densities only, a dying cell must generate interstitial fluid and a dividing cell must
consume interstitial fluid. More precisely, a cell volume Q2 corresponds to /¥ fluid molecules hence the first
term of the right-hand side of equation (3) corresponding to the source-sink term of equation (2). The second
term corresponds to the change in the number of interstitial fluid molecules as a result of cell volume change. It
takes the simple expression given below, in which the convected derivative is understood to be taken with respect
to cell flow, when cells and interstitial fluid have the same mass density and equation (1) is enforced [25]. The
complete equation reads:

B! + 0ty = —nehy — k) — L ©
Qf dt Qf
where v/ is the interstitial fluid velocity.
2.2. Charge conservation
The conservation of charges can be written as
% iv.1-0, @
ot

where p(x, ) is the local charge density, and I(x, ) is the electric current.

2.3. Momentum conservation
We consider the total stress to be given 0,5 = 07,5 + O'(]; 5 where o7, ; is the stress associated with the cells and

ag 5 is the stress associated with the interstitial fluid. The cell stress can be decomposed into an isotropic part o ©
and a traceless anisotropic part &, 3, so that the total cell stress can be written as

Ufﬂ = 5};’1 + 0. (5)

For simplicity, we consider the anisotropic stress in the interstitial fluid to vanish over length scales large
compared to that of the cells. Then the fluid stress is of the form

oy = —Pléy. (6)

The force balance of the tissue in the absence of any external forces captures momentum conservation and
can be written as

9s(05 + aly) = 0. )

The force balance in equation (7), allows for a momentum transfer between the cells and the interstitial fluid
which corresponds to an internal force [25]. As a consequence we write

8@0’55 —f,=0. 9
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Heref,, is the force which takes into account the momentum exchance between the two components of the
system.

3. Constitutive equations

We now introduce, in the spirit of generalized hydrodynamics [39], the constitutive equations of a tissue
permeated by a fluid, submitted to the action of an electric field and in which cells are able to generate electric
currents and fluid flow. We call such a tissue a polar tissue and to conveniently indicate the directions of
pumping and current generation we introduce a ‘polarity’ vector p with p*> = 1. This further implies the
existence of a nematic order parameter for the tissue givenby q,; = p,p; — (1 / 3) p?6u3. Furthermore the cells
can generate active stress as a result of active processes in the cytoskeleton, such as the action of molecular
motors which consume a chemical fuel ATP. This generated stress can additionally have a contribution from cell
division and apoptosis [24, 40].

Cell volume and the cell volume fraction are a priori function of local intensive parameters

Q° = Q°(of, Qaﬂ&ri%% paEa)’ and ¢ = ¢(of, qaﬁ&éﬁ’ paEa)’ (10)

where 2. and ¢ are functions of the isotropic cell stress, o %, the projection of the anisotropic cell stress &, ; on the
nematic order parameter g,,3, and the projection of the applied electric field E,, on the cell polarity p,,. In
principle, intensive parameters involve fluid stress as well, in other words fluid pressure. However, to get any
sizeable effect that pressure must exceed several tens of atmospheric pressure. The flows we consider here involve
fractions of it. Hence, we can safely ignore the fluid pressure dependence here.
The osmotic compressibility of the cells is defined as x ! = (n)~!(dn¢/do®). Because n° = ¢/, we also
have x = n°[d(¢/€)/do]~ L. The expansion of dn°/dtto first order using equation (10) can be written as
1dn® _,do°¢ . d(q,508) _,d(p,En)
wde Y @ T BT
where x, = n°[d(¢ / Q) / d(q,30, ﬂ)]*l, and x; = n°[d(¢/Q,) /d(p,E.)]"". Introducing the convective deriva-
tive dn®/dt = On/0t + v;0,n", equation (2) can then be rewritten as

Ldne ek (12)
n. dt

an

Gk

The net growth rate k; — k, of the tissue is in general a function of 0%, g, 35,3 p, Ea> Where we focus our
attention on variables that are even under time reversal [25] . It can be expressed to first order as:

ki—ko=n"'P + o+ Vﬁgﬁqaﬁ + vip, Eo), (13)

where 77! = d(ks — k) / do“ls¢, £ v and vy are expansion coefficients. The homeostatic pressure of the tissue
in the absence of anisotropic stress and electric field is denoted Pj,. The dependence of ks — k,on q,,355 has
been introduced in [40] on symmetry grounds, and was shown to be experimentally relevant and measurable.
This dependence captures the fact that the anisotropic part of the cell stress tends to change cell shape. It can
therefore also influence cellular processes and hence modify the division rate. Similarly, we write the dependence
onthe p,E, term on symmetry grounds. Its physical origin stems from the fact that an external electric field
tends to redistribute pumps and channels and also in general interacts with polar microtubules etc. As a result
the cell division rate and apoptosis rate are modified. A priori, the value of the corresponding coefficient is not
known and the point of this analysis is to provide means to evaluate it experimentally.

Using equations (12) and (13), we obtain a general constitutive equation for the isotropic cell stress

d) . pe d).. d e
(1 + T’E)(” + Pp) + V(l + T@)%qug + V1(1 + ﬁg)paﬂa = My (14)

where 7; = 7}/ is the isotropic relaxation rate, 7, = 7/, is the anisotropic relaxation rate, 7 = 7/x; is the
relaxation rate arising from the electric field, and 7 is the bulk viscosity. For slowly varying states we can neglect
relaxation processes and equation (14) simplifies to

o° + P =5, — V5,5q,5 — V10, Ea (15)

Similarly we can write on symmetry grounds a constitutive equation for the anisotropic part of the cell stress
which reads to linear order

¢ ¢ 2
Oap = 2MVap + (op — V2(0,Es + pyEa — gvan,,éag), (16)

where for simplicity we introduce an isotropic shear viscosity npand v, is a coefficient, which couples the electric
field to the anisotropic cell stress. The active anisotropic part of the cell stress is given by (g, Similarly, we write

4



10P Publishing

NewJ. Phys. 21 (2019) 043035 N Sarkar et al

a constitutive equation for the momentum exchange f, between interstitial fluid and cells
fo = =605 = vD) + Ap, + MEa + Xaqu5Es + Na0sq, 5 (17)

where k describes friction between the cells and the fluid and " is the effective permeability of the tissue. The
second term results from the pumping activity of the tissue. This is easily seen in considering a situation such that
there is no fluid pressure gradient, hence with equations (6) and (9) the momentum exchange vanishes f, = 0.
We furthermore consider a situation with no electric field and no nematic gradient. Under such conditions,
there can still exist a fluid flow relative to the cells, which is determined by the balance between the first and the
second terms of equation (17): this is the pumping activity observed experimentally. The third and fourth terms
represent the isotropic and anisotropic parts of the force density generated by electric fields. They are
characterized by the coefficients A, and A5 respectively. The fifth term characterized by the coefficient A4
represents the contribution to f,, arising from a gradient of the nematic order parameter. Finally we can also
write a constitutive equation for the electric current

I, = _R(V(i - V({) + Alpo¢ + AZEa + A3qaﬂEﬂ + A4aﬁ%5, (18)

where £ is the coefficient describing the streaming current, A the coefficient describing the current resulting
from a polar distribution of ion pumps, and A,, A are respectively the isotropic and anisotropic part of the
electric conductivity tensor. The coefficient A4 is an out-of-equilibrium flexoelectric coefficient. On the coarse-
graining scale we use here, the tissue is neutral. The local electric equilibrium is fast compared to tissue dynamics.
Thus 0,p =~ 0, which imposes a condition of conservation of the electric current (18)

duI, = 0. (19)

Furthermore, assuming the cell and fluid mass densities to be equal and constant [25] implies that the total
volume flux v, = n°Q¢ + nf/Qf v/ is divergence free

OV = 0. (20)

The constraint of incompressibility (20) is imposed by using the fluid pressure P/ as a Lagrange multiplier. In a
similar way, the constraint of current conservation (19) is imposed by using the electric potential U as the
Lagrange multiplier, where E, = —0,U is the electric field.

4. Thick epithelium on a permeable substrate

We consider a thick planar tissue consisting of cells and interstitial fluid resting on a substrate and embedded in a
fluid medium. The fluid surrounds the tissue-substrate system from all sides and can permeate the substrate
whereas cells cannot. A constant fluid flow v/, through the tissue is imposed for instance by an appropriate
hydrostatic pressure difference. Similarly, we work at constant imposed electric current density I..,,. We study
how the interplay of cell division, cell apotosis, fluid pumping, osmotic pressure and electric current in the tissue
controls its dynamics and morphology. We only consider a homogeneous slab, so that dynamical quantities
depend only on one variable which we call zand which describes the distance from the substrate. We postpone
for future work the study of the stability of the found solutions with respect to variations of quantities parallel to
the slab. We consider cells uniformly polarized along the z-direction, and we chose p, = 1. A schematic

representation of the system is given in figure 1.

4.1. Constitutive equations in planar geometry
We first write down the constitutive equations for our model tissue in one dimension. Using (15) and (16), the
constitutive equations for the cell stress 0%, can be written as

0%, = =P + 0500 — veEs, (21)

where P{T = Pf — 2((1 — 2v/3) /3 is the effective homeostatic pressure of the tissue, defined as the difference
between the homeostatic pressure and the total active pressure of the tissue, and 1,4 = 7 + 4n(1 — 2v/3) /3 is
the effective viscosity of the tissue. Both of them are constants for the given system. Here

Veg = V1 + 41, (1 — 2v/3) /3 is the effective coefficient coupling electric field and stress. Using equations (6),
(9), and (17), the force balance equation takes the form

0.Pf = k(v —v)) — N — (u+ §A3)Ez. 22)

Using the current conservation law (19) we have I(z) = I, where L. the externally imposed electric current
and the tissue electric field reads
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I — A | ROE—v))
Ez = + P 23
n n (23)

where A = A, + 2A;5/3 is the electric conductivity.

4.2. Boundary conditions

We specify boundary conditions for a planar epithelium of thickness 4. We allow for narrow surface layers of
thickness e, comparable to cell size, at both z = 0 and z = hto have have growth rates k; — k, that differ from
the bulk values by a value 6k. This gives rise to a difference between cell velocity and interface velocity near the
interface. Thus the cell velocity at z = hisrelated to the interface velocity by

v;(z=h) = dn_ Vs (24)
dt

where v; = dkje. Atz = 0 the tissue is attached to an immobile substrate. The boundary condition for the cell
velocity reads

vi(z=0)=, (25)

with v, = dke.
Incompressibility of the tissue (20) implies ¢pv¢ + (1 — ¢)v)/ = v/, where v/,

velocity of the external fluid. Therefore the interstitial fluid velocity v/, reads
f
yf = Jet _¢ Ve, (26)
l—¢ 1-9
Force balance at the tissue surface implies stress continuity. Thus the total stress is balanced by the hydrostatic

pressure P., of the external fluidatz = h

is the externally imposed

o.(z=h)=0, — P = -P.. (27)

Atz = hfluid is exchanged with the tissue at a rate that is driven by the fluid chemical potential difference
between the upper outside region (denoted with the index 1, see figure 1) and the tissue, and can be written as
dh f

M[(PL, — Py —TIL ] + ], = i Vi (28)

Here, I1.,, denotes the external osmotic pressure of osmolites that do not to enter the tissue or the interstitial
fluid and A describes the permeability of the interface for water flow. This is for example the case for dextran
with molecular mass exceeding 100 kDa [8]. The flux J, = A/ (I}, , — II},, o), can be nonzero as a result of
active pumps and transporters. It looks like a flow due to an effective water pump. Here Hixt,O and Hilm’o denote
the outside and inside osmotic pressure, respectively, of osmolites that can be exchanged between external fluid

and tissue. Using equation (28), the total cell stress at (z = h) reads

J 1 dh
c _ 11! e AL Y i

JZZ Hext + Af + Af (Vext dt )' (29)
Using the above boundary conditions we now discuss the thickness dynamics of a thick epithelium on a substrate
or basal membrane.

4.3. Internal dynamics of a thick epithelium
4.3.1. Time dependence of tissue thickness
We first write the equation for the cell velocity v; for the case of constant cell volume fraction ¢:

ANO2vE — ad,vi — vi +wy =0, (30)

where A\, with \j = Negr (1 — @) / Kefr 18 a hydrodynamic screening length discussed in [25]. The length
a = v R/ (AKegr) stems from the influence of the electric field on tissue flow. The effective fluid pumping
velocityis givenby vy = [A(Lexx — AD/A + M1 — @) /Ker + vef(t and k. = kK — AR/ isan effective
permeability where A = A, + 2);/3.

Equation (30) can be solved for given boundary conditions (29) and (25), to determine the velocity profile
and the corresponding cell stress profile

Vs (2) = vp + (v2 — va)exp(k 2)
PH/noe + an/ g + (a/ A — k) (v2 — vp)exp(kih)

kz) — k
Pl = e s exp ) — (h — a/ A exp(kh)

, (3D
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[PH + neffaVA/Aé — N (ki — a/\3)(va — w)exp(kih)]
[(ky — a/ A exp(koh) — (ki — a/\)exp(kh)]
x [(ky — a/A)exp(hoz) — (ki — a/\)exp(kiz)], (32)

ng = —022 + neff[(kl — %](Vz — VA)eXp(klz) _ IJVA:I

where ky, = (a + Ja? + 4)\] )/2)\(2). Here PH = Pf — 2¢(1 — 20/3) /3 + Vegg[Uexe — M) /A — RVl vege/
[AQ — )] — 1L, + (], b + Vef;t) / M is an effective homeostatic pressure of the tissue which takes into account the
effects of electric currents and fluid flows. Equations (31) and (32) show that the instantaneous cell velocity and the cell
stress profiles combine two exponentials with characteristic lengths klle.

Using the boundary condition (24) for the cell velocity atz = h, we obtain a dynamical equation for the

tissue thickness:
dh v [exptkoh) — exptim)] [k — a/A)(va — wexp(kih) — an/Ag — P* /14
dt 1+ Ay (1 + Ap) [(ky — a/ADexp(koh) — (ki — a/Af)exp(kih)]
(v2 — w)exp(kih) (33)
1+ Ap)

where Aj, = [exp(kh) — exp(kih)] /[Afneff ((ky — a/)\é) exp(koh) — (k — a//\g)exp(klh))] isnon-zero and
positive.

Equation (33) can give rise to three different behaviors, tissue growth, tissue collapse or finite steady state
thickness. If on one hand cell division dominates over cell apoptosis dh/dtis positive and tissue growth takes
place. If dh/df remains positive at all times, the thickness increases indefinitely, leading to a complete invasion of
the available space. This corresponds to what is commonly called tissue proliferation. If on the other hand
apoptosis dominates over cell division, then dh/dt is negative, the tissue shrinks. If dh/dt < 0 persists atall
times, the tissue finally collapses. The tissue can also reach a stable steady state with dh/dt = 0 and constant
thickness. The steady state thickness then depends on the imposed electric current and fluid flow. Steady states
can also be unstable. In this case the tissue thickness evolves away from the steady state value. This can give rise to
either tissue collapse, indefinite growth or finite thickness, depending on initial conditions and parameter
values.

For simplicity, we restrict our analysis to the case a < \. This is motivated by simple estimates of
FR~10°Cm™3, v~ 1.5PamV Land A ~ 6 x 1073Q ! m~!forwhicha ~ 5 - 108 m. We also estimate

Ao = 1 cm, see appendix. Fora < Ay, wehave kj = —k, = 1/ ). In this case the time dependence of tissue
thickness simplifies to
1+ Ap) dh «
- =f(h)=1— ———— + [tanh(h/ ), 34
o dr f cosh(i/ A B tanh(h/ Ao) (34)

where = 1 — v, /vy, and 3 = PHN/(n.4).

We show in figure 2 examples of the four generic scenarios characterizing the dependence of dh/dt on tissue
thickness h. Zeros of f (h) correspond to steady states which can be stable or unstable depending on the sign of the
slope df/ dh. Negative slopes correspond to stable and positive slopes to unstable situations. We find that either
two, one or zero steady states may exist, depending on the values of o and 3. The different possible scenarios are
summed up in two state diagrams shown in figures 3(a) and (b), for vy > 0,and v, < Orespectively. The lines
delineating the states characterize continuous and discontinuous transitions. Spinodal lines are also shown.
Discontinuous transitions, are reached when the conditions f(h) = 0and df/dh = 0 are satisfied
simultaneously. The corresponding line is a portion of the circle a* + 3° = 1as shown on figure 2. It will be
shown as a dashed line on all figures. All other boundaries correspond either to continuous transitions shown as
solid lines, or to ‘spinodal’ transitions shown as dotted lines. The ‘spinodal’ lines signal the appearance/
disappearance of an unstable (resp: stable) steady state, when crossing the line from a phase in which only one
stable (resp: unstable) steady state exists. In the corresponding domain, initial conditions determine the eventual
fate of the system.

As the coefficients ovand 5 depend on the parameters defining the tissue properties and experimental
conditions, we can transform the generic state diagrams corresponding to conditions in which the external flow
v/, or the current I are imposed. We can also investigate the role of parameters such as the effective
homeostatic pressure P. We discuss the steady states and the different growth regimes as a function of v/, and
I in the next subsection.
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Figure 2. The four generic dependences of the rate of change of tissue thickness, as a function of thickness: plot of the ratio
%% as a function of h for different values of the dimensionless parameters a = 1 — v, /vy, and 3 = PH)\g/(n,4v), which
characterize both the fluid flow and the electric current passing through the tissue. For positive v, a positive (negative) value of this
ratio corresponds to a thickness increase (decrease) of the epithelium layer; for negative v, a positive (negative) value of this ratio
corresponds to a decrease (increase) of the layer thickness. (a) The three curves corresponding to 3 = —2, —1and 0 are generic for all
a < 0.Forall § < —1 the curve intersects the h axis once for a finite h = hvalue, leading to a stable steady state if vy > 0, unstable
steady stateif vy < 0.As 3 — —1, the steady state thickness diverges hy; — 00, which signals a continuous transition taking place for
B = —1.For8 > —landv, > 0proliferation takes place and for 5 > —1andv, < 0 collapse is predicted. (b) and (c) The five
curves correspondingto 5 = —2, —1, —0.93, —0.86 and 0 are typical of the succession of curve shapes for 0 < a < 1;the
intersection details are expanded in (¢). For § < —1 there is one intersection with the / axis and the situation is similar to that
described in (a); there is however one important difference in that the curve has a minimum for finite 4. As Fis increased above —1 a
new steady state arise from infinity, leading to a pair of steady states. This scenario corresponds to spinodal conditions reached for

B = —1. The pair of steady states exists in a finite range for —1 < 3 < (. the value of 3. being non universal and depending on . In
this domain, depending on initial conditions one can have a stable finite thickness or proliferation for vy > 0, a stable thickness or
collapseifvy < 0.So . marksa discontinuous transition to tissue proliferation (resp. tissue collapse) for vy > 0 (resp. vy < 0).

(d) The three curves corresponding to 3 = —2, —1and 0 are genericfor« > 1.Forall 5 < —1 thereis no fixed points and the
epithelium either proliferates or collapses depending on the v, sign; forall 3 > —1 there is one fixed point, unstable if vy > 0, stable if
va < 0.The steady state thickness diverges as 3 — —1. This defines the transition at 3 = —1 as a continuous transition.

N Sarkar et al

4.3.2. Steady states
When a steady state with dh/dt = 0in equation (34) exists, the steady state tissue thickness is given by

— 2 _
h=oln| 222 2C (35)
This thickness is of order the screening length Ay up to alogarithmic factor. Here
[ AoVefi R Ao | [ NoVett Ketr |
A=all - - +nt+trnt+Bl+—"7—| (36)
e (L = AN negeA | A = ) |
B=21-a-08-m), (37)
[ )\0 Veff K )\0 1 [ A0 Veff Keff |
C=aqall+ +tn—mn+B[l - ———7—) (38)
Teg(1 — AN eV | AL = ) ey |

where we have introduced the dimensionless quantities 7/ = ef;t /2 Lt = Mege (1

— @)/ (Nkeev2), v, = /2,

72 = AO(pH - Veferxt/A + VeffRVéfqt/((l - ¢)A) + Véf(t/Af)/(neffVZLWhere &A =W\ — Ve])r(t - >\Iext(1 - ¢)/

(AKege).




I0OP Publishing NewJ. Phys. 21 (2019) 043035 N Sarkar et al

(a) (b)
2.0 : 2.0

15, Y _ 15| 777 s,

1.0

1.0

-1.0 -1.0
-20 -15 -10 -05 0.0 0.5 1.0 -20 -15 -10 -05 0.0 0.5 1.0

Tissue Proliferation Tissue Collapse
Small finite tissue thickness or tissue proliferation Finite stable steady state thickness
Tissue Proliferation or Collapse I Tissue collapse or finite tissue thickness

Figure 3. State diagram of a thick epithelium in the a—@space for (a) vy > 0,and (b) v5 < 0.1In the green region the epithelium layer
evolves spontaneously to a finite stable thickness, in the pink region it proliferates, in the yellow region it collapses. In the blue region
either it proliferates or collapses depending on initial conditions. In the orange region it can either evolve toward a finite tissue
thickness or toward proliferation depending on the initial thickness whereas in the brown region it either evolves toward tissue
collapse or a finite tissue thickness again depending on initial tissue thickness. A continuous black line denotes continuous transitions,
dashed lines discontinuous transitions, and dotted line spinodals.
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Figure 4. Dynamics of the tissue thickness / in the presence of a cell source attached to the porous grid. Plots of dh/dt versus h for

v, > 0 (v, = 3 x 10719 m s7!), corresponding to an increased cell division rate, for negative homeostatic pressure P = —15 KPa.
The insets highlight the stability of the steady states defined by dh/dt = 0 with arrows indicating the direction of variation of h. We
show (a) a stable steady state resulting in a finite layer thickness for vefxt =3 x 107® m 57}, (b) a pair of stable—unstable steady states
resulting in either finite thickness or proliferation depending on initial thickness for v, = 1.08 x 107 m s~!, and (c) absence of any
steady state resulting in proliferation for vle =3 x 1077 ms~L. All other parameter values are taken from table 1.

Note that steady states exist onlyif A > 0,and —B + +/B?> — 4AC > 2A orifA < 0and —B +

JB? — 4AC < 2A.

4.3.3. Tissue dynamics in the absence of electric currents

We first discuss examples of thickness dynamics in the presence of fluid flow and absence of electric currents,

I« = 0. Figure 4 shows the growth rate dh/dt as a function of tissue thickness for v, > 0, i.e. increased cell
division rate at the tissue-substrate interface. There are three possible behaviors: (i) In figure 4(a) the existence of
a stable steady state shows that under the chosen conditions the epithelium layer will spontaneously evolve
toward a finite thickness irrespective of the initial conditions; with the chosen numbers this thickness is a
fraction of the screening length ), (ii) figure 4(b), the existence of a pair of stable—unstable fixed points shows
that for initial thicknesses smaller than the unstable one the layer goes spontaneously to the stable value whereas
for larger initial values the layer proliferates; figure 4(c), dh/dt being always positive the epithelium layer always
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Figure 5. Profiles of (a) cell velocity, (b) net cell division rate, (c) total cell stress, and (d) fluid pressure in steady states of a thick
epithelium for vi=-3%x10ms, I, =0, P = —1KPaand v, = 3 x 1071 m s~!. Other parameter values are taken from
table 1.

proliferates. These different scenarios, depend on the value of the external fluid flow v/, and tissue homeostatic
pressure Pj. For a negative homeostatic pressure, when cells die in the bulk, a positive external fluid flow
permeating through the tissue gives rise to cell division and hence can counter the effect of cell death. When the
two effects exactly balance, the tissue exhibits a steady state with a finite thickness (figure 4(a)). For a high
external fluid flow, cell division surpasses cell apoptosis, and the tissue grows indefinitely (figure 4(c)). For
intermediate values of v/, the tissue can exhibit two different behaviors depending on the initial tissue
thickness: it can either reach a stable steady state or proliferate out of bounds (figure 4(b)).

At steady state, the tissue slab is not homogeneous. The net cell turnover, the cell velocity, the total cell stress,
and the fluid pressure exhibit non-trivial profiles along the z-axis. An example of profiles is shown in figure 5 for
vl = —3 x 107 m s 'and I, = 0 and homeostatic pressure of P{ = —1 KPa. In this case cells undergo
apoptosis in the bulk, and only the cell division in the surface layer prevents the tissue from collapsing. The fluid
flowing in the negative z direction, translates into a pressure on the tissue which increases the rate of apoptosis.
This effect is cumulative and the pressure is larger at the bottom of the layer than at the top, as can be seen on the
stress profile. At the bottom layer, cells divide; as they move up, they balance cell death. As required by boundary
conditions the cell velocity vanishes at the free surface. Since the total apoptosis rate is larger in the presence of
flow than in the absence of flow, the steady state thickness is smaller in the presence of flow than in its absence.

The dynamics of the tissue for v, < 0, i.e. cells dying at the tissue-substrate interface, is shown in figure 6.
There are three possible scenarios, which are again determined by the values of v/, and Pf. For P{ > 0,anda
low v/, cell death still dominates, and the tissue collapses fully as shown in figure 6(a). For P{ > 0, and
intermediate values of v/,

thickness. This possibility is shown in figure 6(b). Eventually, for large enough v/, the steady state thickness
regime disappears in favor of proliferation: depending on the initial thickness, the tissue either collapses or

proliferates. This unstable regime is shown in figure 6(c).

the tissue can either reach a stable thickness or collapse depending on the initial
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Figure 6. Dynamics of the tissue thickness & in the presence of a cell apoptotic sink attached to the porous grid. Plots of dh/dt versus h
forv, < 0(v, = —3x107'® ms™")at P = 5KPa. The insets highlight the stability of the steady states defined by dh/dt = 0 with
arrows indicating the direction of variation of h. We show (a) the absence of steady state resulting in layer collapse for v, = 1 x
1071 m 571, (b) the presence of a pair of unstable—stable steady stattes resulting in either a layer collapse or a finite stable thickness
depending on the initial thickness value, for vefxt =5 x 107® m 57!, and (c) the presence of an unstable steady state resulting in either
layer collapse or proliferation depending on initial thickness value for vl =1 x 107 m s~ All other parameter values are taken
from table 1.
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Figure 7. State diagram of a thick epithelium in the presence of external fluid flow and absence of electric current. (a) For

v, = 3x10'° m s~ ' in the green domain the layer evolves spontaneously to a finite stable value, in the pink domain the layer
proliferates and in the orange domain it either evolves toward a finite thickness or proliferates depending on initial conditions. (b) For
v, = —3 x 1071 m s~!in the yellow domain the layer collapses, in the brown domain it either collapses or evolve toward a finite
stable thickness and in the blue region it either collapses or proliferate depending on initial conditions. Continuous, dashed and
dotted lines have the same meaning as on figure 3. In (a) and (b) we have used \; = —1 x 1078 N m~3. The other parameters used are
givenin table 1.

State diagrams in the pi_pf phase space summarize these results in figure 7(a) for v, > 0 and figure 7(b) for
v, < 0.Here P = )\ Pf / (Mo v2)- Changing P can be achieved by tuning Pf and, changing #/ by tuning v/,.
As already explained for v, > 0, the tissue can exhibit three different behaviors, depending on the values of P"
and 77 (i) the green region corresponds to the existence of a stable steady state with a finite thickness irrespective
of initial thickness, (ii) the orange region corresponds to tissue evolving toward a finite thickness or proliferating
depending on the initial thickness, and, (iii) the pink region corresponds to uncontrolled growth. The solid line
delineating the green and the pink regions indicates a continuous transition: the steady state thickness diverges
upon approaching the line and reaches infinity on the line. The dotted line delineating the green and orange
regions correspond to a spinodal line. It signals the appearance of a stable fixed point at finite thickness
simultaneously with the appearance of an unstable fixed point for infinite thickness when crossing the line from
green to orange. The dashed line which delineates the orange and pink regions is a line of discontinuous
transition, where the pair of stable—unstable fixed points with finite thickness disappears when crossing the line
from orange to pink.

A negative v, implies a sink for cells at the tissue-substrate boundary. There are again three possible
scenarios: (i) in the blue region, one has one unstable steady-state: for initial thicknesses smaller than that of the
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Figure 8. Dynamics of the tissue thickness & in the presence of external electric current and cell division source attached to the porous
grid. Plots of dh/dtversus hforv, > 0(v, = 3 x 10" '° m s~ ') in the presence of electric current and fluid flow. The insets highlight
the stability of the steady states defined by dh/dt = 0 with arrows indicating the direction of variation of h. (a) For alow electric
current Iy = 3 A m™2, we get a the layer evolves toward a stable finite thickness. (b) For a higher value of the current Iy, =

4.1 A m~2, the layer evolves either toward a stable finite thickness or proliferates depending on initial thickness. (c) For a high enough
value of the electric current I, = 5 A m~2, the layer always proliferates. Here we have used P{ = —5 KPaand v, = —3 x

10~ m s~!. The chosen values of the rest of the parameters are taken from table 1.

unstable fixed point the tissue collapses, while for larger initial thicknesses the tissue proliferates, (ii) in the
brown region, there are two fixed points, one unstable and one stable: the tissue collapses for initial thicknesses
smaller than that of the unstable fixed point, and converges to a finite stable thickness if the initial thickness is
larger than that of the unstable fixed point, (iii) in the yellow region, there is no fixed point, dh/dtis always
negative and the tissue collapses. The continuous line signals a continuous transition from a scenario with one
unstable steady state to the total absence of steady states, the value of the unstable thickness going continuously
to infinity upon approaching the line from the blue side. The dotted line between the blue and the brown region
signals a spinodal transition, with the stable fixed point of the brown region going continuously to infinity upon
approaching the blue region. The dashed line signals a discontinuous transition, the stable unstable pair of fixed
points disappearing simultaneously for a finite common thickness.

4.3.4. Tissue dynamics in the presence of electric currents

We now discuss the state diagram as a function of the imposed electric current I..,.. Using equation (33) we plot
dh/dtversus hin the regime v, > 0 in figure 8, for different values of the current I.. Like in the previous
subsection, we find three possible scenarios: (a) irrespective of its initial thickness, the tissue reaches a stable
steady state (b) if the initial thickness is larger than the unstable fixed point value the tissue proliferate and if the
initial thickness is smaller than this value the tissue thickness goes to a finite stable value (c) dh/dtis always
positive and irrespective of initial conditions the tissue proliferates. In all these cases I, > 0, the current flows
from the substrate towards the growing interface of the tissue in the positive z direction; this provides an electric
field promoting tissue growth if ; > 0. Furthermore for v, > 0 the surface layer attached to the substrate acts
also as a source of dividing cells. However if the homeostatic pressure, Pf, and the external fluid velocity v/, are
negative, both of which favor cell apoptosis, the tissue slab may reach a stable steady state whenever the opposing
effects balance exactly. Such a situation is displayed on figure 8(a), where a balance between the positive I, and
negative v/, allows for the tissue to reach a steady state. In figure 8(b), the value of the current I, is higher, the
electric field can no longer be balanced if the initial thickness is large enough and the tissue reaches an
uncontrolled growth state. However if the initial thickness is small enough the effects of the fields can still be
counterbalanced, and the tissue can reach a steady state. If the value of I, is further increased, as in figure 8(c),
the electric field is strong enough to push the tissue to the uncontrolled growth phase, where dh/dt > 0
irrespective of initial conditions.

We have plotted steady state profiles for the cell velocity, cell turnover, cell stress, and fluid pressure, in
figure 9. The fact that the cell velocity decreases continuously to zero as the ordinate goes to h, shows that cells die
everywhere in the bulk. They divide only at the surface. This fact is also clear from the negative value of the
turnover rate. The high negative cell stress corresponds to a high pressure which is responsible for the large
apoptosis rate.

When v, < 0, the surface layer attached to the substrate is a cell sink. If the homeostatic pressure is also
negative, the cells tend to die in the bulk too. What can prevent the tissue from an immediate collapse is the
opposite action of an electric field or of an external fluid flow provided it has the right sign. We find that in the
dh/dtversus h plot of figure 10 for v, < 0, three different situations can arise, depending on the value of I, and
v/ : (a) the tissue always collapses with dh/dt < 0, (b) with a pair of unstable—stable fixed points the tissue

ext-
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Figure 9. Steady states profiles of the (a) cell velocity, (b) cell turnover, (c) cell stress and (d) fluid pressure, as a function of the distance
to the substrate zfor I = 1 Am~2, Pf = —5KPa, v, = 3 x 100 m s },and v/, = —3 x 10~ m s~!. The values of the other
parameters are taken from table 1.
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Figure 10. Dynamics of the tissue thickness in the presence of external electric current and cell apoptosis sink attached to the porous
grid. Plots of dh/dtversus hfor v, < 0(v, = —3 x 107 '® m s~ ') in the presence of electric current and fluid flow. The insets
highlight the stability of the steady states defined by dh/d¢ = 0 with arrows indicating the direction of variation of k. (a) The layer
collapses for alow electric current Iy, = 2 A m~2, (b) for a higher value of current L, = 3 A m™2, the tissue collapses for a small
initial thickness whereas it reaches a steady state, with a large initial thickness, and, (c) for higher value of current Iy = 5 A m~2 it
either collapses or proliferates depending on initial thickness. Here we have used vl =9 x 108 ms,and Py = —5KPa.The
values of the remaining parameters are taken from table 1.

collapses for initial thicknesses smaller than that of the unstable fixed point, and reaches a stable thickness for
initial thickness values larger than the unstable one, (c) with one unstable fixed point, the tissue collapses for an
initial thickness smaller than the thickness value of the unstable fixed point, and proliferates for an initial
thickness larger than that value. In figure 10(a) we see a total tissue collapse for a low value of electric current
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Figure 11. State diagram of a thick epithelium in the presence of an external electric current and external fluid flow. (a) For

v, = 3 x 107! m s71, in the green domain the layer thickness evolves spontaneously toward a stable finite value, in the pink domain
the layer proliferate and in the orange domain they either evolve toward a finite stable value or proliferate depending on initial
conditions; (b) for v, = —3 x 107! m s~ ! in the yellow domain the layer collapses, in the brown domain it either collapses or evolves
toward a finite stable thickness and in the blue region it either proliferates or collapses depending on initial conditions. Here

v = Vej,(“ / vy,and Iy = Mo (1 — @) /(Akegrv2). We have used Pf = —5 KPa. All other parameter values are taken from table 1.

Ly = 2 A m~2, which is indicative of the fact that the current and external fluid velocity are not enough to
counter the large apoptosis rate due to the combined effect of negative homeostatic pressure and surface
apoptosis v, < 0.Ifthe currentis increased, keeping all other parameters constant, we find parameter values for
which the electric field allows to obtain a stable tissue thickness provided the initial thickness is large enough. For
asmaller initial thickness the tissue collapses as shown in figure 10(b). If the current is increased further, tissue
growth dominates, if the initial thickness is larger than that of the unstable fixed point and drives the tissue to an
uncontrolled growth phase. For a smaller initial thickness, we still obtain a tissue collapse. This unstable steady
state is shown in figure 10(c).

These dynamical states for both positive and negative v, can be visualized in two seperate diagrams in the
#/ — I« parameter space. We plot these diagrams in figures 11(a) and (b) respectively. With v, kept constant,
tuning 7/ can be achieved by tuning the external fluid velocity v/, and tuning I, can be achieved by tuning the
current I, flowing through the tissue, with all other parameters kept fixed.

Figure 11(a) shows that for positive v,, we find three scenarios: (a) green region: the tissue reaches a stable
thickness irrespective of the initial conditions (b) orange region, existence of a pair of stable—unstable fixed
points: for initial thickness values smaller than that of the unstable fixed point, the tissue slab goes to a stable
finite thickness whereas for larger initial values the tissue proliferates (c) uncontrolled tissue proliferation
(hss — o0) represented by the pink region. The solid line indicates a continuous transition between the green
and the pink regions: approaching the line from the green side, the steady state thickness increases and diverges
on the line. The dotted line between the green and the orange region signals the disappearance of the unstable
fixed point of the orange region upon approaching the green region, the corresponding thickness diverging on
the line. This is a spinodal line. The dashed line signals the simultaneous disappearance of the fixed point pair of
the orange domain upon entering the pink domain. This is aline of discontinuous transition. The point where
the three lines meet is again a tricritical point.

Figure 11(b) illustrates the possible scenarios for negative v,. We again find three possibilities in the #/— I,
space: (a) the blue region corresponds to an unstable steady state, for initial thicknesses smaller than the fixed
point value, the tissue collapses whereas for larger initial thicknesses it proliferates, (b) the brown region is
defined by the existence of a pair of unstable—stable fixed points, for initial thickness values smaller than that of
the unstable fixed point the tissue collapses and for larger initial values it goes to a stable finite thickness
corresponding to the stable fixed point (c) in the yellow region, dh/dtis always negative and the tissue collapses.
The solid line separating the blue and violet domains is a line of continuous transition: the unstable thickness
increases continuously to infinity as the tissue approaches the line from the blue side. The dotted line signals the
disappearance of the stable fixed point as the corresponding thickness goes to infinity when the tissue enters the
blue region coming from the brown side. This is a spinodal line. The dashed line signals a discontinuous
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Table 1. Table of parameter

values used in the plots.
Parameter list

Parameter Values

n 10* Pa s

7 2 x 10°Pas

Py —5000 Pa

P 0.99

K 10" Pas m—2

R 103Asm™3

¢ —1000 Pa

v, 20 pm d~!

Al —108 Nm™

A 10°N m2V-!

A 3Am2

A 1073Sm™!

N 107" ms~! Pa~!

T 107%ms!

v 1

v 1Pa mV!

v, l.5PamV!

transition as the pair of fixed points disappears when the tissue enters the yellow region coming from the
brown side.

5. Discussion

In this work, we have analyzed the long term growth behavior of planar thick epithelia permeated either by a constant
fluid flow or by a constant electric current, or both. The predictions are striking, since one finds that the domain of
stability of a finite thickness epithelium is rather small, and that a simple dc electric current or a simple fluid flow is
sufficient to either lead to tissue proliferation or to tissue collapse, without any need for genetic mutation. The results
should be rather robust, since the above developed arguments are based on symmetry considerations, force
conservation laws and cell number balance equations. Yet, this exercice would be futile if the field values required for
observing these behaviors were out of experimental reach. Even though our phenomenological theory involves a
rather large number of parameters, the formulation can be cast in such a way as to involve only two control
parameters, which can be estimated either from values already known experimentally, or from educated guesses. The
one feature which is the most difficult to assess is the sign of the coupling parameters. These will need specific
experiments to be pinned down. We expect clearly observable effects for flow fields or electric fields somewhat larger
than those generated naturally in epithelia, but not orders of magnitude larger. The reason is that either flow or
currents comparable to the naturally occurring ones can redistribute proteins in the cells and modify their polarity
rather efficiently. The simplest result we obtain is that the steady state thickness of epithelia is proportional to the
hydrodynamic screening length introduced in [25] and which one can estimate from [40], with a multiplicative
logarithmic correction. The product turns out to be in the milimeter range, a very reasonable feature for stratified
squamous epithelia. The main limitation of this theory stems from the assumption of homogeneity in the direction
parallel to the tissue layer. It is well possible that instabilities leading to lateral structuration of the tissue exist. This
possibility should be investigated in the future. In any case, well controlled experiments are clearly needed, and would
give us a deeper insight on the fundamental properties of thick epithelia. The prediction of either collapse or
proliferation under suitable conditions is an exciting possibility which should be tested. Last, the process of tissue
collapse may take an interesting twist: our analysis does not include explicitly the cell surface layer. It is only included
in a flux boundary condition. As a result, the collapse may correspond to a thickness decrease up to the last layer,
which usually has very different properties [9, 40, 41], or in other word to a transition from a thick epithelium to a
monolayer epithelium. This aspect could be tested experimentally as well.
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Appendix. Estimation of relevant parameters

One can obtain an order of magnitude of the coefficient A = X, + 2);/3, by estimating the shear stress created
by the electo-osmotic flow in the intercellular region.

The hydrodynamic stress is as usual given by o = 1d, v, where nis the interstitial fluid viscosity, and J,v the
shear rate due to electro-osmosis at the cell membrane surface. Standard calculations [42] yield

Dy = SOSE poeh, (39)
Ap1)
where e is the permittivity of the fluid (here water), ¢, is the permittivity of vacuum, ( is the zeta potential of the
cell membrane, ES* is the electric field in the cleft, and Ap is the Debye screening length.
Then the stress is expressed in terms of ES" as (see figure A1)
o~ SO05E < EZeft) (40)
Ap
which gives the total force on the cell to be 4ll. o, with I being the height of the cell, and /. being the width of the
cell. The force per unit volume can then be written as
Ao deeo(p e

~ = ——=E"" 41
Je I Aole © (41)

The relation between the coarse grained electric field E,, and the actual field ES*" in the intercellular domain
is simply given by the geometrical relation EZ*® ~ [.E, /(2W) stemming from current conservation ignoring
the current passing through the cells, where Wis the width of the intercellular cleft. Using this relation, the force
per unit volume can be expressed as

2eep(g
~ E,, 42
1z oW (42)
which leads to
Ao 200G (43)
W b

Using ¢p = 8.85 x 1072 Fm~!, ¢ ~ 80 for water, (; ~ 3 x 1072mV, W ~ 10" m,and \p ~ 10~° m, we
obtain A >~ 3 x 10°N m—2V~1,

The term A in (17) corresponding to cell polarity has also never been measured to our knowledge. If we
assume that it is comparable to the electric term, under conditions such that the average flux vanishes, we can
infer an estimate based on the knowledge of typical potential differences generated by epithelial cellsi.e. mV.
Then \; &~ — AE,. As the potential difference V =~ 1073 V in MDCK blisters [43, 44] and width of a cell
I.~ 10 m,thenE, ~ V/I.~ 0 x 102V m LThus \E, >~ —\E, ~ —3 x 105107%/10° N m—3 ~
—108Nm™3

We next estimate the values of v/, 11, and v, in equations (15) and (16). We argue that v should be of O(1), as
itis a dimensionless parameter as evident from (15). To determine the value of v/}, we assume that v, p, E, plays
the role of a pressure, even though the underlying physics might be more subtle. Thus we equate v, p, E, = MhE,,
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sothat vy = M ~ O(1) Pa m V™!, For v,, we compare equation (16) with (40), from which we can

express v, ~ ecoCple/(2WAp) = 80 x 8.85 x 10711 x 3 x 1072/107? x 50 Pa m V!~ 1.5Pam V..
The coefficient & may be estimated using standard streaming potential relations [45] adapted to the

intercellular domains, similar in spirit to what was done for estimating A. We obtain

12y
Wl
Using the values above and I, >~ 107> m, gives & ~ 10> A s m~>.

The coefficient A/ can also be estimated using standard fluid flux calculated in the intercellular cleft and from
geometric relations, just like we used in the calculation of A, we obtain the expression

3
AN~ w .
617n

R~ (44)

(45)

Using the values of W, I, and 7, given above, yields A/ ~ 10~ m Pa~!s~".

To estimate the value of ], we note that at steady state the pressure difference P.,,—P/ is equal to the osmotic
pressure difference IT,, \—I1i,, o, where J, = A/ (IT4, ;~I1i o). Furthermore we know that the curvature radius
of a cell membrane R should be much larger than the cell thickness I, for the cell to be stable. So the pressure
difference P.,—P/ ~ ~/R should be much smaller than /I.. This ensures, IT,,; o~I1} . o < 7/I.. Using the

ext
valuesof y ~ 107*N m ™ ',and /. ~ 10> m, we obtain J, =10 ms L
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