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Abstract
We study the hydrodynamics and shape changes of chemically active droplets. In non-spherical
droplets, surface tension generates hydrodynamic flows that drive liquid droplets into a spherical
shape.Herewe show that spherical droplets that aremaintained away from thermodynamic
equilibriumby chemical reactionsmay not remain spherical but can undergo a shape instability which
can lead to spontaneous droplet division. In this case chemical activity acts against surface tension and
tension-induced hydrodynamic flows. By combining lowReynolds-number hydrodynamics with
phase separation dynamics and chemical reaction kinetics we determine stability diagrams of spherical
droplets as a function of dimensionless viscosity and reaction parameters.We determine concentra-
tion andflow fields inside and outside the droplets during shape changes and division.Ourwork
shows that hydrodynamic flows tends to stabilize spherical shapes but that droplet division occurs for
sufficiently strong chemical driving, sufficiently large droplet viscosity or sufficiently small surface
tension. Active droplets could provide simplemodels for prebiotic protocells that are able to
proliferate. Ourwork captures the key hydrodynamics of droplet division that could be observable in
chemically active colloidal droplets.

Living cells are compartmentalized in order to organize their biochemistry in space.Many cellular
compartments do not possessmembranes and are formed by the assembly of proteins andRNA in compact
condensates [1–16]. Such condensates often have liquid like properties and resemble droplets that formby phase
separation of a complexmixture [1, 11–13]. Indeed protein droplets are observed to form in vitro by phase
separation in physiological buffer [13, 15, 17–19]. Such droplets can organize chemical reactions in space, and
the droplet dynamics can in turn be influenced by the reactions, as has been shownboth in theory [8, 20–26] and
experiments [13, 15, 17–19, 27, 28]. The ubiquitous nature of RNA-protein condensates in a large variety of
different cells and organisms suggests that the physical chemistry ofmacromolecular phase separation
represents an evolutionary oldmechanism for the compartmentalization of chemistry and that droplet
formation could have played a key role at the origins of life and the emergence of prebiotic protocells [15, 18,
29–40].

Aminimalmodel of a protocell consists of a droplet that turns over by a chemical reaction and is constantly
suppliedwith dropletmaterial by diffusion from the outside [39]. In such a scenario droplets aremaintained
away from thermodynamic equilibrium and can reach a non-equilibrium steady statewith a radius that is set by
reaction parameters [26]. An interesting possibility is that the spherical shape of active droplets becomes
unstable and droplets spontaneously divide in two smaller daughters drops, providing a physicalmechanism for
the division of prebiotic cells [39]. Such droplet dynamics is a hydrodynamic problembecause surface tension in
non-spherical droplets drives hydrodynamic flows that redistributematerial and deform the droplet shape
[41–44].

Here we develop a hydrodynamic theory of the dynamics of chemically active droplets.We show that
chemical reactions in active droplets can performwork against surface tension and flows, giving rise to a shape
instability that can result in droplet division.We investigate the conditions forwhich droplets divide and
determine hydrodynamic flowfields of dividing droplets.
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Weconsider an incompressible liquid consisting of dropletmaterial B and solvent component Awhich can
phase separate. The local composition is characterized by the concentration field c(x) of component B. Volume
preserving chemical reactions can transform component A into component B and back, A B. For simplicity,
wefirst discuss an effective dropletmodel. A single droplet characterized by high concentration c of component
B coexists with the surrounding fluid thatmainly consists of A and contains B at low concentration, see figure 1.
Both phases are separated by a sharp interface. The concentration of B satisfies a balance equation, where the
chemical reaction provide a source or sink term s±(c),

¶ +  = · ( ) ( )jc s c 1t

= -  + ( )j vD c c. 2

Here, the indices+ and− refer to quantities outside and inside the droplet, respectively. The flux j consists of
advection by the fluid velocity v and a diffusion flux, whereD±denotes the diffusion constant of the droplet
material in the two phases.

The chemical reaction is described by the concentration-dependent rate ( )s c which in general is a nonlinear
function of c. For simplicity, we linearize the chemical reaction rates in the vicinity of reference concentrations


( )c 0 in each phase:

n- -    ( ) ( ) ( )( )s c k c c , 30

where 
( )c 0 are the equilibrium concentrations that coexist at equilibrium across aflat interface.We have defined

the reaction rate n = ( )( )s c 0 and the reaction constants = ( )( ) /k s c cd d0 .We focus on the case of positive
coefficients >k 0 and n > 0, where B is produced outside the droplet, and degraded inside, see figure 1.

The hydrodynamic flow velocity v obeys Stokes equation of an incompressible fluid,

h  =  ( )v p, 42

which accounts formomentum conservation∂ασαβ=0, where the stress tensor is given by
σαβ=η±(∂αvβ+∂βvα)−pδαβ. Here η±denotes the fluid shear viscosities inside and outside of the droplet.
The pressure p plays the role of a Lagrangemultiplier to impose the constraint  =· v 0.

The bulk equations (1)–(4) are connected by boundary conditions at the droplet interface whichwe
parameterize in spherical coordinates by the radial interface positionR(θ,f) as a function of the polar and
azimuthal angles θ andf. The stress boundary conditions read

s s g- =+ -( ) ( ) ( ) ( )R R H R2 5nn nn

s s- =+ -( ) ( ) ( )R R 0, 6nt nt

whereH(R) is the localmean curvature of the interface and γ is the droplet surface tension. The stresses at the
interface on the inner and outer side of the droplet are denoted by sab

 ( )R . The tensor indices n and t refer to
tensor components normal and tangential to the interface, respectively. The normal and tangential tensor

Figure 1.Chemically active droplet described by an effective dropletmodel. Shown is the concentration field c (blue and green color)
of a stationary droplet (interface in black). Chemical reactionsB→A create a sink of dropletmaterial B in the droplet, and reactions
A→B create a supersaturation ò of dropletmaterial in theA-rich phase outside. This creates concentration gradients of B, which
drive diffusionfluxes of dropletmaterial, while Aflows in the opposite direction. The stationary droplet size results from the balance
of thefluxes across the interface. (Parameters: ò=0.176,A=10−2, η+/η−=1, k+/k−=1, ν−/(k−Δc)=1,D+/D−=1,
β−=β+, =+

( )c 00 ).
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components are defined as s s= a ab b
 n nnn and s s= a ab b

 n tnt , where nα is a unit vector normal to the surface
and tα is a unit vector tangent to the surface. Equation (6) is valid for all tangent vectors and summation over
repeated indices is implied. Using no-slip boundary conditions, the velocity field is continuous at the interface,

=+ -( ) ( ) ( )v vR R . 7

The concentrationfield c is discontinuous across the interface with values given by

b g= +- - -( ) ( ) ( )( )c R c H R 80

b g= ++ + +( ) ( ) ( )( )c R c H R 90

which are set by the physics of phase coexistence and a local equilibrium assumption. The coefficients
β±describe the effects of the Laplace pressure on the equilibrium concentrations at phase coexistence. In the
presence offluxes at the interface, the interfacemoves in normal direction. The radial growth velocity is

=
-
-

- +

- +·
· ( ) ( )

( ) ( )
( )n

n e

j jR

t

R R

c R c R

d

d
, 10

r

where n is a unit vector normal to the surface and er is a unit vector in radial direction. Equation (10) captures
both convection of the interface byflows and droplet growth and shrinkage by addition or removal ofmaterial.

Wefindnon-equilibrium steady state solutions to equations (1)–(10)with a spherical droplet of stationary
radius R̄ and stationary concentration field ¯ ( )c r , where r is the radial coordinate, see appendix A. The stationary
pressure p̄ exhibits a jump g R̄2 across the interface and no hydrodynamic flows exist, =v̄ 0. An example for a
stable non-equilibrium steady statewith steady state concentration profile inside and outside the droplet of
radius R̄ is shown infigure 1.

Wefirst discuss the properties of these stationary states as a function of external supersaturation
 n= D+ +( )k c and the dimensionless reaction rateA=ν−τ/Δc inside the droplet. The supersaturation is in
our system generated by reactions outside the droplet and in steady state corresponds to the concentration for
which s+= 0.Here,D = -- +

( ) ( )c c c0 0 andwe have introduced the time scale τ=w2/D+, wherew=6β+γ/Δc
is a characteristic length scale. The stationary radii as a function of supersaturation ò are shown Infigures 2(A)–
(C) as solid lines for different values ofA. For values of ò smaller than a threshold value ò0, no stationary radius
exists. For values ò>ò0 two steady state radii R̄c and R̄s exist, which become equal at ò0 where they approach a
value R̄0. The smaller steady state radius R̄c is a critical nucleation radius similar to the critical droplet radii
found in passive systems. The larger radius denoted R̄s stems from the interplay of phase separation and
chemical reactions [26, 39]. As the supersaturation reaches a value  n= D¥ - - + + - -( ) ( ) ( )D k D k k c , the
stationary radius R̄s diverges.

We can find simple expressions for the stationary radii in the limit of smallAwhile keeping the ratios
ν−/(k−Δc) and k+/k−of reaction parameters fixed. In this limit, the chemical reactions fluxes vanish as s±∝A
and the threshold value ò0 vanishes as ò0∝A1/3. The critical nucleation radius then behaves as ¯ ( )R w 6c

and the larger steady state radius ¯ ( )R w A3s
1 2 where   ¥ 0 , see figure 2(B) and appendix A.5.

The steady state solutions are independent on thefluid viscosity, however the droplet dynamics is affected by
hydrodynamic effects.We now investigate the role of hydrodynamic flows on chemically driven shape
instabilities that can give rise to droplet division.We perform a linear stability analysis at the stationary state
given by =¯ (¯ ¯ ¯ ¯)vX c R p, , , for small perturbations d d d d d= ( )vX c R p, , , . The dynamics of these perturbations
can be represented using eigenmodes

åd = m ( )X X e , 11
n l m

nlm nlm
t

, ,

nlm

with = ( ¯ )vX c Y RY p Y, , ,nlm nl lm lm l lm lm , where q f( )Y ,lm are spherical harmonics with angularmode indices with
l=0, 1, ...andm=−l,K, l. The index n=0, 1, ... denotes radialmodes. The eigenmodes exhibit an
exponential time dependencewith a relaxation rate given by the eigenvalueμnlm. Themode amplitudes are
denoted ònlm. The concentrationmodes are characterized by the radial functions cnl(r). The pressuremodes are
described by pl(r) and the velocitymodes q j( )v r, ,lm can be expressed as

Y F= + + ( )( ) ( )v Yv v v , 12lm lm
r

lm lm lm lm lm
1 2

where q j =( )Y e Y,lm r lm, q jY = ( ) r Y,lm lm and q jF Y= ´( ) e,lm r lm are vector spherical harmonics [45]
and the radial functions ( )v rlm

r , ( )( )v rlm
1 and ( )( )v rlm

2 characterize the velocity field. The radial functions can be
obtained by solving the linearized dynamic equations using the corresponding boundary conditions, see
appendix A. The Stokes equation can be solved for a given shape perturbation independent of the concentration
field so that the velocity field and pressure field is independent of the radialmode n. The radial part of the
concentration field obeys aHelmholtz equationwith an inhomogeneity that stems fromhydrodynamic flows.
The homogeneous part is solved bymodified spherical Bessel functions and the inhomogeneous solution can be
found usingGreens functions. Using the dynamic equation for the shape changes of the droplet equation (10),
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we obtain an equation for the eigenvalueμnlm,

m = +
D

 +
¢

-
D

¢¢ +
¢+

+
+ -

-
-⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ¯)
¯ ¯ ( ¯ ) ( ¯ )

¯ ¯ ( ¯ ) ( ¯ )
¯ ( )v R

R

D

c
c R

c R

R

D

c
c R

c R

R
. 13nlm

l
r

nl nl

Here, the primes denote radial derivatives. Note that equation (13) is an implicit equation for the eigenvalues
μnlm because the radial concentrationmodes cnl(r) depend onμnlm, see appendix A. Equation (13) is independent
of the indexm, therefore the degeneracy of an eigenvalueμnl is at least +l2 1.When allμnl are negative, the
spherical shape is stable. Themodes with l=0 correspond to changes in droplet size withoutflows. They are
always stable for =¯ ¯R Rs and unstable for =¯ ¯R Rc . Thus droplet smaller than R̄c will vanish and droplets larger
will grow towards the size R̄s. Thuswe consider the stability of =¯ ¯R Rs in the following. Themodeswith l=1
do not involve shape deformations of the droplet and are thus not associatedwith flows. There always exists a
marginalmodewithμl=1=0 corresponding to overall translations where the droplet and all concentration
fields are displaced and then stay in the newposition.Here we consider shape instabilities for which amodewith
l>1 becomes unstable. Because shape deformations induceflows, this instability depends on the dimensionless
viscosity F=wη−/(γτ), as well as the ratio of viscosities in the two phases, η+/η−.

If we increase the supersaturation òwhile keeping the other parameters fixed, the steady state can become
unstable with respect to themode l=2 for a critical value ò=òc. Infigures 2(A)–(C), the onset of instability
μ=0 for the largest eigenvalueμ of the stationary radius is shown as a red dot, and unstable radii are indicated
by red lines. Different lines correspond to different supersaturations, and the panels showdifferent values of F.
Infigures 2(D)–(E), the corresponding stability diagrams of stationary droplets are shown as a function of the
supersaturation and the reaction amplitude for different values of F. For largeA and small ò, no stationary radius
exists (white regions), so that any droplet would shrink and disappear. For large ò, the stationary state diverges
(gray regions). Spherical droplets are stable in the blue regions. Stationary spherical droplets are unstable inside

Figure 2. Stationary radii and onset of shape instability. (A)–(C) Stationary radius as a function of supersaturation for different
reaction amplitudes = - -A 10 , 10 , ..., 108 7 1. The stationary radii (lines) are independent of the dimensionless viscosity
F=wη−/(γτ), while the onset of instability (red dots, connected by dotted red line) for the different curves varies in the threefigures,
which showdimensionless viscosities = ¥F , 1000, 10 (left to right). The blue line colorsmark stable, the red ones unstable
stationary radii with respect to the elongational l=2mode. In panel (B) the scaling behavior of the nucleation radius R̄c and the
stationary radius R̄s are indicated. (D)–(F) Stability diagramof stationary droplets of size R̄s, as a function of reaction amplitudeA and
supersaturation ò for different dimensionless viscosities = ¥F , 1000, 10 (left to right). For small supersaturation and large reaction
amplitudes, no stationary radius exists (white). For large supersaturation, the stationary radius diverges (gray). In the region between
these regimes, the stationary solution can be stable (blue) or unstable (red)with respect to shape perturbations of the l=2mode. For
decreasing F, the stable regime grows, and theminimal supersaturation ò* at which an instability can be found increases, as well as the
corresponding reaction amplitudeA*. The scaling relations (dashed lines) for the regime of stable droplets and the onset of instability
are indicated, with prefactors according to appendix A.5. (Parameters: η+/η−=1, k+/k−=1, ν−/(k−Δc)=1,D+/D−=1,
β−=β+, =+

( )c 00 .)
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the red region, the surrounding black linemarks the shape instability with respect to the l=2mode. The region
where spherical droplets undergo a shape instability exists for *  , which depends on F. The value ofA for
which the shape instability occurs at * = is denoted *A , see figure 2(E).

For smallA, the onset of instability can be describes by simple scaling behaviors. In the limit of smallA and
for  ¥ , wefind * µ -F 1 2 and *=A A with * ~ -A F 3 2 (comparefigures 2(E)–(F)). For *<A A ,
hydrodynamic flows govern the onset of instability which occurs at a value ofAwhich behaves asA∝ò−1 F−2 .
ForA>A*, hydrodynamic flows can be neglected as compared to diffusion fluxes and the onset of instability
occurs forA∝ ò3. These two scaling regimes are indicated in infigures 2(D)–(F) by dashed lines. A derivation of
these results including prefactors is given in appendix A.5.

We next address the questionwhether the shape instability found in the linear stability analysis can indeed
give rise to droplet divisions in the presence of hydrodynamic flows in the nonlinear regime of the dynamics.We
use aCahn–Hilliardmodel [46] for phase separation dynamics, extended to include chemical reactions and
hydrodynamic flows, that can capture topological changes of the interface.We include chemical reactions via a
source term linear in the concentration aswell as advection by the hydrodynamic flowwhich is described by the
incompressible Stokes equation. Using a semi-spectralmethod [47], we obtain numerical solutions in a cubic
boxwith no-flux boundary conditions, see appendix B.

Starting from aweakly deformed spherical droplet, wefind regimeswhere the droplet disappears, where it
relaxes to a stable spherical shape andwhere it undergoes a shape instability, consistent with the linear stability
analysis of the effective dropletmodel. The transitions between these regimes occur for parameter values close to
those predicted by the linear stability analysis. In the unstable regime, droplets typically divide. This shows that
the droplet division reported previously can also occurs in the presence of hydrodynamic flows. Figure 3 shows
snapshots of the droplet shape together with corresponding hydrodynamic flowfields on the symmetry plane of
a dividing droplet at different times. At early timeswhen the droplet deformation is weak, the flowfield is similar
to the l=2mode obtained from the linear theory, figure 3(A). As the droplet elongates and its waistline shrinks,
theflowfield becomesmore complex, see figures 3(B), (C). Theflowfield shown infigure 3(C) exhibits two
additional vortex lines that form rings around the axis of rotational symmetry. Similarly, after division, two
further vortex rings occur, see figure 3(D). Interestingly, for small deformations the hydrodynamicflow
direction opposes the directions of interfacemotion at themain droplet axes, see figures 3(A), (B). For larger
deformations at later times the flow switches its direction along the long droplet axis where it assists interface
motion. At thewaistline, the flow velocity becomes small, see figure 3(C). After division, the flowfield between
the daughter droplets has very smallmagnitude, while strong flows at the outer sidesmove the droplets apart
figure 3(D).

This example shows that division of active droplets can occur even if hydrodynamicflows that oppose
division are taken into account. Becauseflows act in opposition to the initial deformation of the sphere, the
linear stability analysis already provides the key information of whether droplet division can occur for a given
value of dimensionless viscosity F, see figure 2. This raises the question under what experimental conditions
active droplets would become unstable and division could be observed. Ignoring hydrodynamic flows,  ¥F ,
it was shown that oil–water droplets and soft colloidal liquids or p-granules with sizes of a fewmicrometers
could divide in the presence of chemical reactions [39]. To address the influence of hydrodynamic flows, we have
to estimate the dimensionless viscosity h gt pg= - ( ) ( )F w k T wa6B , wherewe have used τ=w2/D and
D;kBT/(6πηa)withmolecular radius a. Thus, F is an equilibriumproperty of the phase separating fluid. For
an oil–water system,we estimate F≈0.1 , see appendix C. For soft colloidal liquids or p-granules, we estimate
values between F≈10–104 .We can discuss these values using the stability diagrams infigures 2(D)–(F). Oil–
water like droplets with F≈0.1 are unlikely to divide, as the unstable region in the stability diagram is very
narrow. For soft colloidal systemswith F≈10–104 , droplet divisionmight be experimentally observable.We
can estimate typical reaction rates required for division to occur based on the reaction rateA* for which the range
of supersaturation ismaximal. The value ofA* corresponds to a reaction rate in the droplet of the order of
ν−=10−4 mM s–1, see appendix C. A comparisonwith reported enzymatic reaction rates [48] suggests that
such values can be achieved in real systems.

We have shown that spontaneous division of chemically active droplets involvesmechanical work against
surface tension as droplets deform. Active droplets thus can transduce chemical energy tomechanical work and
droplet division is therefore amechano-chemical process. The surface tension of the droplet creates pressure
gradients as the droplet becomes non-spherical that lead to hydrodynamic flows. Because theflows generated act
against the shape deformation, droplets divide only for sufficiently large viscosity or sufficiently small surface
tension and sufficiently large reaction rates.We show that the dependence of the onset of stability on parameters
is captured for small reactionfluxes by simple scaling relations. Ourwork shows that droplet divisionwould be
suppressed in oil–water systems due to large surface tension and low viscosity. However it could be realized in
soft colloidal systems for chemical reaction parameters that could be achieved experimentally. Furthermore
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flux-driven droplet divisions could be observable in biological systems, as both chemical reactions and phase-
separatingmembrane-less organelles with low surface tensions can be foundwithin cells.

AppendixA. Effective dropletmodelwith hydrodynamicflows

A.1. Stationary state of a spherical active droplet
Here, we discuss stationary solutions to equations (1)–(10) in themain text with spherical symmetry and
without hydrodynamic flows =v̄ 0, where the bar indicates a steady state value. In this case, the pressure is
constant both inside and outside the droplet, with a pressure difference due to Laplace pressure between the
inside and outside of the droplets,

g
= +- +¯ ¯

¯ ( )p p
R

2
. A.1

Figure 3.Numerical solution in 3d of an extendedCahn–Hilliardmodel with chemical reactions and hydrodynamic flows reveals that
droplets can divide despite the presence of hydrodynamic flows. Panels (A)–(D) correspond to time points t/τ=100, 2100, 2700,
2800, respectively, where τ=w2/D is a diffusion time, with diffusion constantD and interfacial widthw. The dynamic equations
were solved numerically in a three-dimensional box. Shown are two-dimensional cross-sections of the droplet shape (black) together
with streamlines (gray). Arrows (colored) indicate the direction andmagnitude of theflow (normalized by respectivemaximal
velocities =·v w D 0.0016max (in A), 0.0048 (B), 0.0034 (C) and 0.0047 (D)). (Parameters: F=24,A=8×10−3, ò=0.2,
η−/η+=1, D =+

( )c c 00 , k+/k−=1, ν−/(k−Δc)=0.8).
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The steady state concentration profiles in the presence of chemical reactions are given by [39],

n
= + + ++

+

+
+ + +¯ ( ) ( ) ( )( )c r

k
c A k r l A.20

0

n
= - + +-

-

-
- - -¯ ( ) ( ) ( )( )c r

k
c A i r l , A.30

0

where =( ) ( )i x x x2 sinh0 and k0(x)=e−x/x denotemodified spherical Bessel functions of order zero of the
first and second kind, respectively. The characteristic length scales =  ( )l D k 1 2 are set by reaction rate
constants and diffusion coefficients. The parametersA±are determined by the boundary condition at the
droplet interface, equations (8) and (9)in themain text,

gb n
= -+

+ +

+ +

⎛
⎝⎜

⎞
⎠⎟¯ ( ¯ )

( )A
R k k R l

1
A.4

0

gb n
= +-

- -

- +

⎜ ⎟⎛
⎝

⎞
⎠¯ ( ¯ )

( )A
R k i R l

1
. A.5

0

Stationarity of the droplet radius R̄ implies

¢ = ¢+ + - -¯ ( ¯) ¯ ( ¯) ( )D c R D c R , A.6

see equation (10) in themain text. Note that this equation typically has zero, one or two solutions for a given set
of parameters.

A.2. Linearized dynamics
We introduce small perturbations to the spherically symmetric stationary state, with d= +¯p p p, d=v v,

d= +¯c c c and d= +¯R R R andwrite the dynamics of these perturbations to linear order. The linearized
dynamics reads

d h d = D ( )vp A.7

d =· ( )v 0 A.8

d d d d¶ = - ¢ +  - ¯ ( )c v c D c k c A.9t r
2

d d d

d d

¶ = +
D

 - 

+
D

¶ - ¶

+ + - -

+ + - -

( ¯) [ ¯ ( ¯) ¯ ( ¯)]

[ ( ¯) ( ¯)] ( )

R v R
c

D c R D c R R

c
D c R D c R

1

1
. A.10

t r

r r

Here δvr denotes the radial part of the hydrodynamic velocity.With δc−and δc+we denote perturbations of the
concentration field inside and outside the droplet. The same notation holds for the otherfields. In this linear
analysis, boundary conditions apply at the stationary radius R̄,

d b gd d= - ¢  ( ¯) ¯ ( ¯) ( )c R H c R R, A.11

with perturbation of the curvature d = -( ) ( ¯)H H R H R .
The linearized dynamics can be decomposed in spherical harmonics, see equation (11) in themain text. The

curvature perturbation then takes the form

åd = ¯ ( )H
h

R
Y , A.12

nlm

l
nlm lm

with hl=(l2+l−2)/2.

A.3.Hydrodynamic eigenmodes of the linearized dynamics
Wecan expand the hydrodynamic eigenmodes using a basis of vector spherical harmonics, see equation (12) in
themain text. The velocity boundary conditions equation (7) in themain text for themode amplitudes read

= -+ -( ¯) ( ¯) ( )v R v R0 A.13lm
r

lm
r

= -+ -( ¯) ( ¯) ( )( ) ( )v R v R0 A.14lm lm
1 1

= -+ -( ¯) ( ¯) ( )( ) ( )v R v R0 . A.15lm lm
2 2

The stress boundary conditions (see equations (5) and (6) in themain text) at the interface read

h h g= ¢ - - ¢ + -+
+ +

-
- -( ) ( ¯) ( ¯) ( ) ( ¯) ( ¯) ¯ ( )v R p R v R p R

h

R
0 2 2 2 A.16lm

r
lm lm

r
lm lm

l
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h= ¢ + -+
+

+ +⎡
⎣⎢

⎤
⎦⎥( ) ( ¯) ( ¯)

¯
( ¯)

¯ ( )( )
( )

v R
v R

R

v R

R
0 A.17lm

lm
r

lm1
1

h- ¢ + --
-

- -⎡
⎣⎢

⎤
⎦⎥( ) ( ¯) ( ¯)

¯
( ¯)

¯ ( )( )
( )

v R
v R

R

v R

R
A.18lm

lm
r

lm1
1

h h= ¢ - - ¢ -+
+

+

-
-

-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ¯)

( ¯)
¯ ( ) ( ¯)

( ¯)
¯ ( )( )

( )
( )

( )
v R

v R

R
v R

v R

R
0 . A.19lm

lm
lm

lm2
2

2
2

We solve the radial profiles of themodes with a polynomial ansatz and exclude functions that diverge for
r→0 or  ¥r inside and outside the droplet, respectively. The pressure is then given by

g=-
+

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )p r f

r

R
A.20

lm A

l 1

g= -+
-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )p r f

r

R
. A.21

lm B

l

For the hydrodynamic flow velocity we obtain

g
h

= --

-

+ -
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )v r f

r

R
f

r

R
A.22lm

r
C

l

C

l

1

1

3

1

g
h

=
+
+

-
+
+

-

-

+ -
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( )

( ) ( )
( )( )v r

l

l l
f

r

R

l

l l
f

r

R

3

1

1

1
A.23lm C

l

C

l
1

1

1

3

1

=-( ) ( )( )v r 0 A.24lm
2

and

g
h

= - ++

-

- - -
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )v r f

r

R
f

r

R
A.25lm

r
C

l

C

l

2 4

2

g
h

=
-
+

-
+

+

-

- - -
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
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l

l l
f

r
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f

r

R

2

1

1

1
A.26lm C

l

C

l
1

2 4

2

=+( ) ( )( )v r 0. A.27lm
2

Here, we have defined

=
- + + +

D + + + +
( )( )( )( )

( ) ( )
( )f

l l l l

l l l l

1 1 2 2 3

2 4 2 4 3
A.28A 2 2

=
- + -
+ + - D

( )( )( )
( ) ( )

( )f
l l l l

l l

1 2 2 1

2 1 2 2
A.29B 2 2

=
- + +

D + + + +
( )( )( )

( ) ( )
( )f

l l l l

l l l l

1

2

1 1 2

2 4 2 4 3
A.30C1 2 2

=
- + +

D + + -
( )( )( )
( ) ( )

( )f
l l l l

l l

1

2

1 1 2

2 1 2 2
A.31C2 2 2

=
- + + D + + + +

D + + - D + + + +
( )( )( )( ( ) ( ))

( ( ) ( ))( ( ) ( ))
( )f

l l l l l l l l

l l l l l l

1

2

1 1 2 2 4 3 2 4

2 1 2 2 2 4 2 4 3
A.32C3

2 2

2 2 2 2

=
- + + D - + +

D + + - D + + + +
( )( )( )( ( ) ( ))

( ( ) ( ))( ( ) ( ))
( )f

l l l l l l

l l l l l l

1

2

1 1 2 2 2 2 1

2 1 2 2 2 4 2 4 3
, A.33C4

2 2

2 2 2 2

whereΔ=η+/η− denotes the ratio of the viscosities inside and outside the droplet.

A.4. Concentration eigenmodes
The equation for the radial part of the concentration eigenmode is

l¢ = - -
+



⎡
⎣⎢

⎤
⎦⎥( ) ¯ ( ) ( ) ( ) ( )

D
v r c r

r r
r

r

l l

r
c r

1 1 d

d

d

d

1
A.34l

r
nl nl2

2 2
2

with

l m= +
 ( ) ( )k D . A.35nl nl

2
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The boundary conditions at R̄ are

gb= - ¢  ( ¯ ) ¯
¯ ¯ ( ¯ ) ( )c R

h

R
R c R . A.36nl

l

The left-hand side of equation (A.34) constitutes an inhomogeneity

= - ¢


( ) ( ) ¯ ( ) ( )f r

D
v r c r

1
. A.37

l l
r

The solution ( )c rnl of the inhomogeneous equation (A.34) that satisfies the boundary condition equation (A.36)
can be constructed from a particular solution  ( )c rnl p, of the inhomogeneous equation towhich solutions  ( )c rnl h,

of the homogeneous equationwith =f 0
l

are added to satisfy the boundary conditions, equation (A.36). This
can be expressed as

a= +- - - -( ) ( ) ( ) ( )c r c r c r A.38nl nl nl h nl p, ,

a= ++ + + +( ) ( ) ( ) ( )c r c r c r , A.39nl nl nl h nl p, ,

where the coefficientsα±read

a =
-

 



( ¯)
( ¯)

( )
a c R

c R
, A.40nl

l nl p

nl h

,

,

with = ( ¯)a c Rl nl .
We are especially interested in the case of unstablemodes withμnl>0. Thereforewe focus on the solution

of equation (A.34) for l > 0nl
2 and k±>0. In this case, the homogeneous equationwith =f 0

l
is amodified

Helmholtz equationwhich is solved bymodified spherical Bessel functions, l=- -( ) ( )c r i rnl h l nl, and

l=+ +( ) ( )c r k rnl h l nl, , where il and kl denote themodified spherical Bessel functions offirst and second order,
respectively. The particular solution of the inhomogeneous equation can be obtained by aGreen’s function
approach,

ò

ò

l l l

l l l

=

+

- - - - -

- - - -

( ) ( ) [ ( ) ( ) ]

( ) [ ( ) ( ) ] ( )
¯

c r k r i r f r r r

i r k r f r r r

d

d A.41

l p nl l nl

r

l nl l

nl l nl
r

R

l nl l

,
0

2 2 2
2

2

2 2 2
2

2

ò
ò

l l l

l l l

=

+

+ + + + +

+ +
¥

+ +

( ) ( ) [ ( ) ( ) ]

( ) [ ( ) ( ) ] ( )

¯
c r k r i r f r r r

i r k r f r r r

d

d , A.42

l p nl l nl
R

r

l nl l

nl l nl
r

l nl l

, 2 2 2
2

2

2 2 2
2

2

with the radial part of the inhomogeneity ( )f r
l

given by equation (A.37). The explicit calculation of these
functions has to be handledwith care, since the functions kl and il have divergences for large and small arguments
rthat cancel in thefinal result but can still lead to numerical difficulties when evaluated directly.

The derivative of the concentration profile at R̄ can be expressed as

l

l l

¢ =

+ -

-

-
-

-
- -

( ¯ ) ¯ ( ¯)

( ¯)
¯ · [ ( ¯) ( ¯)] ( )

c R
a

R
g R

c R

R
g R g R A.43

nl
l

l i nl

l p
l k nl l i nl

,

,
, ,

l

l l

¢ =

+ -

+

+
+

+
+ +

( ¯ ) ¯ ( ¯)

( ¯)
¯ · [ ( ¯) ( ¯)] ( )

c R
a

R
g R

c R

R
g R g R , A.44

nl
l

l k nl

l p
l i nl l k nl

,

,
, ,

with

=
¢

( ) ( )
( )

( )g x
xi x

i x
A.45l i

l

l
,

=
¢

( ) ( )
( )

( )g x
xk x

k x
. A.46l k

l

l
,

Using the equation for the shape perturbations (A.10), and using equations (A.43) and (A.44), we obtain
equation (13) in themain text. This equation determines the eigenvalueμnlm of the hydrodynamicmodes.
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A.5. Scaling relations in the limit of small reactionfluxes
In the limit of small chemical reaction fluxes s±we obtain simple scaling expressions for stationary radii and
their shape instability conditions. Herewe present themethod and discuss the results.

A.5.1. Stationary radius. Herewe discuss the stationary radius in the limit of small chemical reaction amplitude
A=ν−τ/Δcwhile keeping the ratios ν−/(k−Δc) and k+/k−of reaction parameters fixed. This corresponds to
the curves ¯ ( )R shown infigure 2(A) for different values ofA.We can identify two regimes in the figure. Thefirst
is the region of small ò, ò∼ò0, which corresponds to theminimumof  ( ¯)R . The second is the region of ¥where
the stationary radius diverges. ForA→ 0, we see that ò0 goes to zerowhile ¥ stays constant, and both are
connected by a straight line that indicates scaling behavior of =¯ ¯R Rs. This increasing separation between ò0 and
¥ (and the corresponding stationary radii) in the limit of smallAmeans that we can analyze the behavior of the
stationary radius in these two regimes separately. For this we consider equations (A.2) and (A.3) for the
concentration field and (A.6) for the stationary radius.We can rewrite (A.6) to obtain an expression relating the
supersaturation to the stationary radius,


b g b g n

=
D

+
D

+
D

-

+
+ - -

-

-

+

- -

+

⎜ ⎟⎛
⎝

⎞
⎠¯ ¯ ( )

¯ ¯

¯cR cR k c

D

D

coth 1

1
. A.47

R

l

R

l
R

l

In this limit of smallA, the characteristic length-scales of the concentration field become largewith µ
-l A 1 2.

Tofind scaling regimes in equation (A.47), we change variables in equation (A.47) from ( ¯)A R, to ( ˆ)A R, with
=ˆ ¯R RA wa , where a is an exponent. For a=1/3wefind the behavior of ò(R) close to ò0 and R̄0,

 = + +-ˆ ˆ ˆ ( ) ( )R R O A
1

6

1

3
, A.481 2 1 6

where  = -ˆ A 1 3 becomes independent ofA for smallA. This function describes the supersaturation as a
function of radius around the threshold value ò0. Due to the inverted presentation  ( ¯)R instead of ¯ ( )R the
function captures both the nucleation radius R̄c and the larger radius R̄s. The threshold value ò0 can be obtained
from equation (A.48) byminimizing ̂ forfixedA as ¶ ¶ =ˆ R̂ 0. It behave as

 = +- ( ) ( )A O A4 . A.490
2 3 1 3 1 2

For large and small R̂, equation (A.48) describes the steady radii R̄s and R̄c , respectively, for which   0. For
large ò, the critical radius obeys


¯ ( )R

w

6
, A.50c

while the larger stationary radius is

¯ ( ) ( )R w A3 . A.51s
1 2

Infigure 2(B), the scaling behaviors given by equations (A.51) and (A.50) are indicated by dashed lines. At ò=ò0
both radiimeet at =¯ ¯R R0, where

= +- -¯ ( ) ( ) ( )R w A O A4 . A.520
1 3 1 2

For =a 1 2, R̄ l becomes independent ofA and


n

=
D

-

+
+-

+

-

-

- -

+

( )
( ) ( )

¯ ¯

¯
D

D k c
O A

coth 1

1
. A.53

R

l

R

l

R

l

1 2

For  R̄ l 1, the stationary radius obeys equation (A.51) and is thus the larger stationary radius R̄s. For

 R̄ l 1, we obtain the divergence of R̄s as ò approaches ¥with


n

=
D

¥
- -

+ +

-

-
( )D k

D k k c
. A.54

A.5.2. Shape instability. We nowdiscuss scaling relations for the onset of instability in the ( ˆ )A, plane in the
limit of smallA, which give the trends shown as dashed lines infigures 2(D)–(F).We use the scaling of the
stationary radius =¯ ¯R Rs close to ò0 with =ˆ ¯R RA w1 3 ,  = -ˆ A 1 3 and = l̂ l A1 2 in equation (13) to obtain

m = - + - -
-

+
-

+

-
ˆ ˆ ( )

( )
ˆ

( ) ( )d

R

A

F
l

D

D

l g

R
O A

2

3
1

1
, A.55nlm

l l
2 3

3
1 6

where m m t=ˆ Anlm nlm and R̂ is related to ̂ by (A.48). Here, = -d f fl C C3 1, where fC1 and fC3 are defined in
equation (A.33) and
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=
+ +

-

b
b

-

+

-

+
( )

( )g
h l h l

l

1

1
A.56l

l
D

D l

with hl=(l2+l−2)/2. For largemode index l,

h h
=

+
+

+ -( )
( ) ( )d

l
O l

2 1
1 . A.57l

Wenow consider conditions forwhich m = 0nlm for smallA and themode (n, l,m) becomes unstable. Using
(A.48) in (A.55), we find a relation between ̂ and R̂ at the onset of instabilityμnlm=0,

 =
-

+ + ++

-

-⎜ ⎟⎛
⎝

⎞
⎠ˆ

( ) ˆ
ˆ ˆ ( ) ( )d

l F
R

D

D
g R O A

2 1

1 1

6

1

2
. A.58l

l
1 1 6

This curve captures the scaling behavior of the onset of instability for different parameters in the -R̄ plane,
corresponding to the red dotted line infigures 2(A)–(C).

We now focus onfinding the scaling relations for the onset of stability of the stationary radius as function of
A, ò and F, as shown infigures 2(D)–(F). At this onset, both (A.58) and (A.48)need to be satisfied.We use both
equations to eliminate R̂.Wefind a crossover regimewith relations * ~ -A F 3 2 between the regionwhere
hydrodynamic flows are relevant (A<A*) andwhere they can be neglected (A>A*). ForA>A*wefind for
μnlm=0 as relation betweenA and ò


+


( )

( )A
g

g
54

1
. A.59l

l
1

2

3
3

ForA<A*wefind


- - -

⎛
⎝⎜

⎞
⎠⎟

( ) ( )A
l

d
F

1

3

2 1
. A.60

l

2
1 2

Infigures 2(D)–(F), the dashed lines indicate these two scaling solutions in the limitA→0 and  ¥F for
l=2, whichwefind to be thefirstmode to become unstable.Wefind that the general trends of the stability
diagram is capturedwell, with small deviations from the full solution of equation (13) for small ò, and larger
deviations in the regime close to ¥where the scaling of the stationary radius µ -R̄ As

1 3 breaks down.

Appendix B. Continuummodel for active droplets withflows

B.1. Continuummodel for active droplets
We study an extendedCahn–Hilliard equationwith chemical reactions coupled to Stokes equation for
hydrodynamic flows at lowReynolds numbers.We consider an incompressible fluid containing two
componentsA andB, with number concentration fields ( )rc t,A and = ( )rc c t,B that depend on position r and
time t, andwithmolecularmassesmA andmB andmolecular volumes vA and vB.We are interested in the case
where componentA forms the background fluid andB is a dropletmaterial that forms droplets by phase
separation. Additionally, chemical reactions convert the two components into each other, A B. For
simplicity, we considermass and volume conserving chemical reactions withmA/vA=mB/vB, which encodes
that volume is conserved in the reaction ifmass is conserved. Together with incompressibility, this implies that
themass density ρ=mAcA+mBcB is constant. Therefore, we can describe the systemby the concentration
( )rc t, of the dropletmaterialB only.

We use the following double-well free energy density [46]

k
=

D
- - + - +( )

( )
( ) ( ) ( ) ( )( ) ( )f c

b

c
c c c c c

2 2
, B.1

2
0 2 0 2 2

withD = -- +∣ ∣( ) ( )c c c0 0 . Here, the positive parameter b characterizesmolecular interactions and entropic
contributions. This free energy describes the segregation of the fluid in two coexisting phases [49]: one phase rich
in dropletmaterial with c≈c(0)− and a dilute phase with c≈c(0)+ . The coefficientκ is related to surface tension
and the interface width [46].

The state of the system is characterized by the free energy

ò=[ ] ( ) ( )F c r f cd , B.23

where the integral is over the system volume.Weworkwith an ensembleT, ρ, chere, whereT denotes
temperature and the system is considered isothermal. The chemical potential m d d=¯ [ ]F c c , governs demixing
and can be split into local and nonlocal contributions, m m k= - ¯ ¯ c0

2 with
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m =
D

- - - -+ - - +¯
( )

( )( )( ) ( )( ) ( ) ( ) ( )b

c
c c c c c c c2 . B.30 2

0 0 0 0

The dynamics of the concentration field is described by [50, 51]

¶ = - +· ( ) ( )jc s c B.4t

m= -  +¯ ( )j vM c. B.5

Here,M is amobility coefficient of the dropletmaterial and v is the hydrodynamic velocity. The source term s(c)
describes chemical reactions, for whichwe choose for simplicity a linear concentration dependence,

n= - - +( ) ( ) ( )( )s c k c c . B.60

The reactionflux given in equation (B.6)does not obey detailed balancewith respect to the free energy, and thus
describes a situationwhere an external energy sourcemaintains the system away from equilibrium [39].

The hydrodynamic velocity v can be calculated usingmomentum conservation,

r s¶ = ¶a b ab( ) ( )v , B.7t

withmomentum ρvα and stress tensorσαβ, whereα andβnumber Cartesian coordinates x, y, z.We canwrite
the stress tensorσαβas

s r s s= - + +ab a b ab ab( ) ( )v v , B.8deq

where thefirst termdescribes advection of the stress tensor, sab
eq and sab

d denote the equilibrium and dissipative
stress tensors. The equilibrium stress tensor is given by

s m d d= - - -
¶

¶ ¶
¶ -ab ab

a
b ab( ¯ )

( )
( )c f

f

c
c P . B.9eq

0

Here, m -¯ c f is the osmotic pressure of the dropletmaterial, and δαβ denotes theKronecker delta.
Incompressibility is enforced by an additional partial pressure P0. The deviatory stress tensor can be found as
thermodynamic force related tomomentumbywriting the entropy production rate,

s h d h d= - + ¢ab ab gg ab gg ab⎜ ⎟⎛
⎝

⎞
⎠ ( )v v v2

1

3
, B.10d

where η and h¢ denote viscosities, and vαβ=(∂α vβ+∂β vα)/2 is the symmetric strain tensor.
In the Stokes limit, the inertial terms are neglected, r =a( )D v 0t , with advected derivativeDt=∂t+vβ∂β,

leaving s s= ¶ +b ab ab( )0 deq . This yields [52]

h m k¶ = ¶ -  ¶ + ¶b a a a a¯ ( ) ( )v c c c P3 . B.112
0

2
0

Equations (B.3)–(B.6) and (B.11) and incompressibility∂αvα=0 define the continuummodel of active
droplets.

B.2.Numerical solution of the continuummodel
Wenumerically solve the dynamic equations of the continuummodel of active droplets, equations (B.3)–(B.6)
and equation (B.11)with equation (B.13) and incompressibility ¶ =a av 0.

For this we use a spectralmethod in a 3d rectangular box. This has the advantage that in a spectral
decomposition, the spatial operators become simplemultiplicationswith thewavenumber [47]. However, our
equations contain a number of nonlinear functions, which are easier to evaluate in real space.We therefore
transform forward and back in each time step.

To calculate the next timestep ti from thefields found in timestep ti−1, we use a semi-implicit Runge–Kutta
method [53] (method (2, 3, 3)) for the concentration field. This evaluates the gradient term in m̄, equation (B.3),
implicitly, while evaluating the rest of m̄ as well as the advection termof the fluxes, vc, explicitly. This effectively
means that the terms related to the interfacial profile are calculated implicitly, which allows for larger time steps
as an explicit scheme.

For the concentrationfield, we choose no-flux boundary conditions (∂nc=0, where the derivative is in a
direction normal to the simulation box), which leads to a decomposition in cosine functions in the spectral
description. The Laplacian then is−k2 for amodewithwave vector k . The Stokes equation can also be solved
using spectralmethods. Here, no-flux conditions lead to vn=0. Additionally we enforce incompressibility
using a reprojectionmethod. For this, the velocityfield calculated by neglecting the partial pressure, Pp=0, can
be split into two parts (Helmholtz decomposition),

y f= + =  ´ - y f ( )v v v B.12
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with vector field y and scalar fieldf, and velocity parts y=  ´yv and f= -fv .With this, we find

f = D· ( )v B.13

and thus, using incompressibility,  =· v 0, we can calculatef.We thusfind the incompressible part of the
velocityfield

f= - y ( )v v . B.14

Wecan evaluate this in Fourier space using a spectralmethod. For a rectangular box alignedwith the coordinate
system,we thusfind that each velocity component vα is decomposed by sines in one direction and cosines in the
other direction. Spatial derivatives convert a sine-description into cosines, and vice versa.

We normalize concentration, length, time and energy byD = -- +
( ) ( )c c c0 0 , k= ( )w b2 1 2, t0=w2/D and

k= Dˆ ˆ ( )e w c 30
2 , respectively, where the characteristic length scale is k= ( )w b2 1 2. The relevant

dimensionlessmodel parameters are D+
( )c c0 , kt0 , and ν−t0/Δc.We choose D =+

( )c c 00 , kt0=10−2,
n = ´ -t 2 100

3 and h =ˆ ( ˆ )w t e 23
0 0 . Additionally, we use as box-length =ˆL w 100 in all 3 dimensions,

number of grid-points in one directionN=128 and simulation timeT/t0=4×103. For the time step, we
start with a timestep ofΔt/t0=10−4, and double the timestep to afinal step size ofΔt/t0=0.01.

We start with initial conditionsR=R0 (1+òY2,0), with =ˆR w 70 and ò=1. The concentrationfield at
positions r is initialized by the function

=
+

+
-+ - + -( ) ( ) ( )

( ) ( ) ( ) ( )
r

r
c

c c c c d

w2 2
tanh , B.15

0 0 0 0

where ( )rd is the oriented distance of r to the nearest point on the ellipsoid. The value of ( )rd is negative for
points inside the droplet and positive for points outside.

B.3. Effective dropletmodel as a limit of the continuummodel
Wenowdiscuss the relationship between the effective dropletmodel and the continuummodel. To relate the
twomodels, wefirst use the continuummodel to derive jump conditions for the concentration in the effective
dropletmodel in equilibrium.We then consider stress balance across this interface and derive stress boundary
conditions in the effective dropletmodel. Finally we discuss the dynamical equations in the bulk and at the
interface in non-equilibrium situations.

B.3.1. Derivation of jump conditions for equilibrium phase separation. First we consider the phase separation in
equilibriumwithout chemical reactions in the continuummodel.

In a one-dimensional systemwith amean concentration c̄ with < <+ -¯( ) ( )c c c0 0 , the free energy of the system
in equation (B.2) isminimized by the concentration profile

* =
+

+
-- + - +( ) ( )

( ) ( ) ( ) ( )
c x

c c c c x

w2 2
tanh , B.16

0 0 0 0

where k= ( )w b2 1 2 denotes the interfacial width and x is the normal distance to the interface. The
concentration profile describes two phases of concentration -

( )c 0 and +
( )c 0 separated by aflat interface of widthw.

The surface tension can be defined as

*òg = - +
-¥

¥

- +[ ( )] ( [ ] [ ]) ( )( ) ( )F c x F c F c x
1

2
d . B.170 0

For the free energy equation (B.2)with the concentration profile equation (B.16), this can bewritten as
*òg k= 

-¥

¥
( )c xd2 which yields g k= D( )c b62 or [54].

This interfacial tension governs the concentration jump condition in the effective dropletmodel, which can
be derived as follows. To describe a curved interface, we consider two homogeneous phases with concentrations
c±. For a finite volumeVswith a droplet of sizeV and areaA the concentrations c±can be found byminimizing
the free energy F=f (c−)V+f (c+)(Vs−V )+γAwith ¶ ¶ =-∣F c 0V and ¶ ¶ =-∣F V 0c , where the
concentration of both phases are related by = + -- +¯ ( )V c Vc V V cs s where c̄ denotes the average
concentration in the system. Thus for two phases to be in equilibrium, their chemical potential m̄ and osmotic
pressure mP = -¯c f need to obey

m m= -- +¯ ( ) ¯ ( ) ( )c c0 B.18

g= P - P -+ -( ) ( ) ( )c c H0 2 , B.19

whereH themean curvature of the droplet and gH2 is the Laplace pressure. These equations determine the
concentrations in the phases c±of coexisting phases [54].

For small Laplace pressures, we can express the equilibrium concentrations c± of a curved interface by the
concentrations of aflat interface 

( )c 0 plus a small perturbation,
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b g= +- - - ( )( )c c H B.200

b g= ++ + + ( )( )c c H, B.210

where b = ¢¢ D ( ( ) )( )f c c2 0 . For the free energy equation (B.2), wefindβ±=2/(bΔc), which is related to the
interfacial width asw=6γβ+/Δc.

B.3.2. Stress balance across the interface. We now consider stress balance of the continuummodel across the
droplet interface to derive stress jump conditions at the interface in the effective dropletmodel.We discuss the
mechanical equilibrium in a small volume across a curved interface with a localmean curvatureH
corresponding to a (local) effective radius =R̃ H1 .We focus on the casewhere the interface is rotationally
symmetric around the considered point R, andwhere the curvature does not change along the interface.We use
spherical coordinates, where the radial vector er is alignedwith the (outward pointing )normal vector n and the
tangential vectors t and s are alignedwith qe and fe , respectively (with the vector directions forf=0 in the
limit θ=0).We consider a small box enclosing R where the outer and inner surfacesAout andAin have a
constant distance of δ to the interface, and the lateral surfaceAlat is at a constant angle θ0 with respect to the
symmetry axis. The geometry is shown infigure B1.

Now let us consider the balance of the stress tensor equation (B.7) across the box, taking into account the
curved geometry. The stress balance s¶b ab can bewritten as

s= b ab∮ ( )A n0 d , B.22

whereα andβ are Cartesian coordinates and ñ the (local, outward pointing)normal vector of the box-surface.
We can split this in three terms,

ò ò òs s s= - +a a a ( )A A A0 d d d , B.23n n tout in lat

wherewe used that the orientation of the normal vectors of the box coincides with the normal/tangential vector
of the interface.

On the inner and outer areasAin andAout, the stress tensor presented in equation (B.8)with equilibrium
stress tensor in equation (B.9) reduces to the formof the effective dropletmodel given after equation (6) in the
main text, as the gradient terms are negligible for d  w .We now consider the limit of a sharp interfacew→0
withfinite surface tension γ, and consider the case of a small box of thickness δ, which remains larger than the
interfacial width. The componentsα=x, y of equation (B.23) vanish by symmetry. Forα=zwe find

p q s p q s p q g= - -+ -   ( )R R R0 sin sin 2 sin , B.24nn nn
2 2

0
2 2

0
2

0

where s
nn are the stress tensor components of the effectivemodel, equation (4), inside and outside the interface

at R. Integration over the lateral box surfaceAlat yields the last term, ò s p q g@a A Rd 2 sintlat
2

0 .We thusfind

that themechanical equilibriumof a curved interface introduces a Laplace pressure 2γH,

s s g= - -+ - ( )H0 2 . B.25nn nn

Figure B1.Geometry for the force balance.We consider a spherical cap of the droplet interface, with a boxwith constant distance δ to
the interface inside and outside. The normal and tangential vectors n, t and s of the interface are shown, aswell as the normal vector ñ
of the box. The origin of the spherical coordinate system is the center of the sphere that describes the interfacial curvature, with radius
R̃, while q0 gives the polar angle of the cap.
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We therefore recover the stress jump conditions of the effective dropletmodel, equation (6). Additionally, (B.25)
togetherwith (B.19) implies that the partial pressure needed to satisfy incompressibility is continuous across the
interface, =+ -P P0 0 .

B.3.3. Dynamics of the effective droplet model. We now consider the dynamics of a non-equilibrium systemwith
a droplet.We showhow the continuummodel is related to the bulk equations and jump conditions of the
effective dropletmodel. For this we consider a droplet with a interface that is thin compared to the dynamical
length scales l±, so that we can describe the interface by local equilibrium. In the bulk phases we focus on the case
where deviations from the equilibrium concentrations are small.

In the bulk phases, we expand the chemical potential equation (B.3) around the reference concentrations


( )c 0 . The gradient term−κ∇2c in the chemical potential is important within the interface, but can be ignored in
the bulk phases, where the length-scales onwhich the concentration field varies aremuch larger than the
interfacial width. Thuswe can describe the chemical potential by

m
m

» - 


¯ ( ) ¯ ( ) ( )( )
( )

c
c

c c
d

d
, B.26

c

0 0

0

which is m » - ¯ ( ) ( )( )c b c c 0 for our specific free energy.With this simplification, equations (B.4) and (B.5)
become the reaction-diffusion-convection equations (1) and (2)with diffusion constants m= 

( ¯ )∣ ( )D M cd d c0
0

orD±=Mb. Similarly we linearize the chemical reaction rate equation (B.6) in both phases. Aswe already chose
a linear rate for the continuummodel, we only need to relate the parameters k and νwith the constants k±and
ν±of the effectivemodel, with k±=k, ν+=ν and ν−=kΔc−ν . Inserting the linearized chemical potential
equation (B.26) into the equilibrium stress tensor (B.9)wefind thatmomentum conservation in the bulk phases
is given by the Stokes equation (4)with viscosities η±=η, where the pressure p is determined by the
incompressibility condition∂αvα=0.

We consider the droplet interface to be in local equilibrium.We therefore obtain equation (8) for the jump
of the concentrationfield in the effectivemodel. The incompressibility condition∂αvα=0 implies

=- +( ) ( )v R v Rn n at a sharp interface, andwe consider an interface without slip length, so that =- +( ) ( )v vR R .We
thusfind equation (7) of the effectivemodel. The normal stress balance in equation (6) is derived in B.3.2.

As a last point we need tofind equation (10) for the interfacemovement.We consider the concentration
change in a box of width δ around the interface, seefigure B1.We consider a box enclosing a point R on the
interface at the time t alignedwith the normal and tangential directions of the interface at R. The interfacemay
movewith normalmovement ¶ ˆ ( )R tt , with =ˆ ( ) ( ) ·R nR t t and normal vector n, while the box stays at afixed
position. The total change ofmaterial in the volume is given by

ò ò ò¶ = - +˜ · ( ) ( )n jV c A V s cd d d , B.27t
V A V

whereV denotes the volume andA the area of the box. For smallw andfinite δ the concentration field cmakes a
jump from the surfaceAin toAout given by conditions (8) and (9) at R̂.Within each phase, we can express the
field by the boundary values at the interface equation (B.21) and a linear expansion,

+  -
+  -

- -

+ +


⎧⎨⎩( )
( ( )) ( ) · ( ( ))
( ( )) ( ) · ( ( ))

( )r
R r r R

R r r R
c t

c t c t t

c t c t t
,

, inside  droplet

, outside  droplet.
B.28

The chemical reaction is given in both phases by equation (B.6). For small δ and θ0, wefind for the left-hand side
of equation (B.27) that δc vanishes to lowest order and

ò q¶ = - ¶ + +- +( ( ( )) ( ( ))) ˆ ( ) ( ) ( )R RV c A c t c t R O Od , B.29t
V

R t 0

whereAR is the area of the droplet interface enclosed by the box. For a spherical cap, p q= -( ) ˆA R2 1 cosR 0
2
.

We furtherfind that the source termdue to the chemical reaction scales with the volume of the box, and thus
vanishes for a small box, ò q= + +( ) ( ) ( )V s c O Od 0

V 0 . Theflux across the box can be expressed as

ò q- = - + +- +˜ · · ( ( ( )) ( ( ))) ( ) ( ) ( )n j n j R j RA A t t O Od , B.30
A

R 0

where ( ( ))j R t denotes theflux at R inside/outside the droplet.We thusfind the normalmovement of the
interface,

¶ =
-

-
- +

- +

ˆ ·
( ( )) ( ( ))
( ( )) ( ( ))

( )n
j R j R

R R
R

t t

c t c t
. B.31t

In themain text we use spherical coordinates centered at the droplet center. For a spherical droplet, the normal
and radialmovement would thus be the same. For a deformed droplet, we need to consider the relation between
the normal interfacemovement, =ˆ ( ) ( ) ·R nR t t and the radialmovement =( ) ( ) ·R eR t t r . Atfixed angles θ
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andf, the interfacemovement is given by ¶ = ¶R eRt t r . Using ¶ = ¶ˆ ( ) ·R nR tt t , we find a relation between
the radial and normalmovement, ¶ = ¶ ˆ ( · )n eR Rt t r . This relation, togetherwith equation (B.31), yields the
interfacialmovement equation (10) presented in themain text.

We thus recover all dynamical equations of the effective dropletmodel from the continuummodel based on
irreversible thermodynamics. Note that the specific choice of the free energy leads to specific relations between
parameters of the effectivemodel such asD+ =D−. Our derivation shows the relation between bothmodels in
the casewhere the interface widthw is small compared to the droplet size, R w 1, and the chemical diffusion
length,  l w 1. Additionally, we focused on the case where the concentrations in the phases are similar to the
concentrations in equilibrium and have small concentration gradients. These conditions are not valid in all
systems.Most importantly, the chemical reactions can drive concentrations far away from the equilibriumphase
concentrations 

( )c 0 . The resulting behaviors, such as the formation of new interfaces associatedwith instabilities
of the spinodal decomposition regime, are not captured in the effective dropletmodel.

B.4. Comparison of the droplet dynamics in the continuummodel and the effectivemodel
Herewe compare the analytical predictions of the effectivemodel for the instability with numerical calculations
of the continuousmodel for different values of the renormalized viscosity F. For this we numerically solved the
dynamic equations of the continuousmodel starting with a droplet with a small initial deformation ofmode
l=2.Wefitted the dynamical behavior of themode to an exponential function, with yields a numerical estimate
for the eigenvalueμ2. Infigure B2 the resulting eigenvalues are shown, togetherwith the eigenvalue of
corresponding parameters of the effectivemodel.Wefind that the value of F for which droplet shapes become
unstable is very similar to the value predicted by the effectivemodel. The eigenvalues are qualitatively similar to
the ones of the effectivemodel, despite working in an a parameter regimewhere the interfacial width and the
differences of concentrationwithin a phase cannot be considered very small, so that themodels are not
necessarily comparable.

To generate the data in the figure, we initialized droplets with a small shape perturbation for different values
of F. All parameters and initial conditions were chosen as described in appendix B.2.We found that for F 100
droplets divide, while they are stable for F 1. For F=10, the shape deformationwas very slow, so that
divisionwas not seen in the time intervalT/τ=4000. For 10<F<100, as well as = ¥F , we fitted radius
and spherical harmonic deformation to the concentration field using equation (B.15). For short times, the
droplet radius changes as the concentration field and droplet size go towards the stationary values. After that, the
shape deformation grows until the droplet deforms so strongly that the fitting fails. By handwe chose
intermediate timewindows for the simulationswhere the sizewas stationary and the shape deformation small.
In thesewindowswe fitted the deformation amplitude ò (compare equation (B.15))with an exponential
function, +mA Be t2 with parametersA,B and eigenvalueμ2 to the l=2mode of the shape deformation.

Figure B2.Growth of shape perturbations of the l=2mode for different normalized viscosities F=ηw/(γτ) for the continuous
model (red crosses) and effectivemodel (blue curve). The last data point (with arrow) corresponds to  ¥F . (Parameters:
A=8×10−3, ò=0.2, η−/η+=1, D =+

( )c c 00 , k+/k−=1, ν−/(k−Δc)=0.8.)
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AppendixC. Estimation of parameters

Herewe estimate the hydrodynamic parameter for two physical phase-separating systems to understand the
importance of hydrodynamic flows on the droplet division in experimental systems.We discuss two cases,
water–oil phase separation, and soft colloidal systems (such as protein-RNAphase-separation in cells).We have
already estimated parameter values for both systemswithout the influence of hydrodynamicflows [39], where
we found that droplet division should be possible for realistic values of chemical reaction rates in both systems,
and that corresponding stationary radii would have sizes of a fewmicrometers. Herewe estimate the value of the
dimensionless viscosity F for water–oil and soft colloidal systems, and compare them to the analytical phase
diagrams presented infigure 2.

To calculate the hydrodynamic parameter F for experimental systems, we need an estimation of the diffusion
coefficient of the dropletmaterialD+ outside the droplet, of the interfacial widthw (which corresponds to
length-scalew in the paper [39]), of the surface tension γ and of the viscosity η− inside the droplet. For water–oil
systems, the interfacial width is of the order of »w 1 nm and the diffusion constant isD+≈10−9m2 s–1.We
can estimate the surface tension as γ≈10−2Nm–1, and the viscosity η−≈ 10−3N s m–2 [54, 55].With these
values, we find F≈0.1. In this case droplet division is strongly suppressed, see figure 2 of themain text. For soft
colloidal systems, we estimatew≈10 nm,D+≈10−10m2 s–1 and γ≈10−6Nm–1 [1, 54]. The value of F
depends on the viscosity of the droplet. For values η−≈10−3N s m–2, F≈10, and for η−≈1–10N s m–2, we
have F≈104. In both cases droplet division is possible, butmore easy to achieve for larger F.We convertA* to
the reaction rate ν− inside the droplet using the droplet concentration given in [39].

We can use equations (A.59) and (A.60) from the scaling analysis to estimate the instability of the concrete
parameter examples discussed in [39] under the influence of hydrodynamic flows. In these scaling equations, the
ratios η+/η− andD−β−/(D+β+) enter the calculation ofA

* and ò* butwe find that they do not lead to relevant
changes in the results. The scaling analysis thus yields results very similar to the estimation usingfigure 2.
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