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Abstract

We study the hydrodynamics and shape changes of chemically active droplets. In non-spherical
droplets, surface tension generates hydrodynamic flows that drive liquid droplets into a spherical
shape. Here we show that spherical droplets that are maintained away from thermodynamic
equilibrium by chemical reactions may not remain spherical but can undergo a shape instability which
can lead to spontaneous droplet division. In this case chemical activity acts against surface tension and
tension-induced hydrodynamic flows. By combining low Reynolds-number hydrodynamics with
phase separation dynamics and chemical reaction kinetics we determine stability diagrams of spherical
droplets as a function of dimensionless viscosity and reaction parameters. We determine concentra-
tion and flow fields inside and outside the droplets during shape changes and division. Our work
shows that hydrodynamic flows tends to stabilize spherical shapes but that droplet division occurs for
sufficiently strong chemical driving, sufficiently large droplet viscosity or sufficiently small surface
tension. Active droplets could provide simple models for prebiotic protocells that are able to
proliferate. Our work captures the key hydrodynamics of droplet division that could be observable in
chemically active colloidal droplets.

Living cells are compartmentalized in order to organize their biochemistry in space. Many cellular
compartments do not possess membranes and are formed by the assembly of proteins and RNA in compact
condensates [1-16]. Such condensates often have liquid like properties and resemble droplets that form by phase
separation of a complex mixture [1, 11-13]. Indeed protein droplets are observed to form in vitro by phase
separation in physiological buffer [13, 15, 17—19]. Such droplets can organize chemical reactions in space, and
the droplet dynamics can in turn be influenced by the reactions, as has been shown both in theory [8, 20-26] and
experiments [13, 15, 17-19, 27, 28]. The ubiquitous nature of RNA-protein condensates in a large variety of
different cells and organisms suggests that the physical chemistry of macromolecular phase separation
represents an evolutionary old mechanism for the compartmentalization of chemistry and that droplet
formation could have played a key role at the origins of life and the emergence of prebiotic protocells [15, 18,
29-40].

A minimal model of a protocell consists of a droplet that turns over by a chemical reaction and is constantly
supplied with droplet material by diffusion from the outside [39]. In such a scenario droplets are maintained
away from thermodynamic equilibrium and can reach a non-equilibrium steady state with a radius that is set by
reaction parameters [26]. An interesting possibility is that the spherical shape of active droplets becomes
unstable and droplets spontaneously divide in two smaller daughters drops, providing a physical mechanism for
the division of prebiotic cells [39]. Such droplet dynamics is a hydrodynamic problem because surface tension in
non-spherical droplets drives hydrodynamic flows that redistribute material and deform the droplet shape
[41-44].

Here we develop a hydrodynamic theory of the dynamics of chemically active droplets. We show that
chemical reactions in active droplets can perform work against surface tension and flows, giving rise to a shape
instability that can result in droplet division. We investigate the conditions for which droplets divide and
determine hydrodynamic flow fields of dividing droplets.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Chemically active droplet described by an effective droplet model. Shown is the concentration field ¢ (blue and green color)
of a stationary droplet (interface in black). Chemical reactions B — A create a sink of droplet material B in the droplet, and reactions
A — Bcreate asupersaturation € of droplet material in the A-rich phase outside. This creates concentration gradients of B, which

drive diffusion fluxes of droplet material, while A flows in the opposite direction. The stationary droplet size results from the balance
of the fluxes across the interface. (Parameters: € = 0.176,A = 10~ %7, /n_ = Lk, /k_ = LLv_/(k_Ac) = 1,D,/D_ = 1,

B =B =0).

We consider an incompressible liquid consisting of droplet material B and solvent component A which can
phase separate. The local composition is characterized by the concentration field ¢(x) of component B. Volume
preserving chemical reactions can transform component A into component B and back, A = B. For simplicity,
we first discuss an effective droplet model. A single droplet characterized by high concentration ¢ of component
B coexists with the surrounding fluid that mainly consists of A and contains B at low concentration, see figure 1.
Both phases are separated by a sharp interface. The concentration of B satisfies a balance equation, where the
chemical reaction provide a source or sink term s..(¢),

dic + V- j = s51(0) M
j=—Di:Vc+ vc. )

Here, the indices 4 and — refer to quantities outside and inside the droplet, respectively. The flux j consists of
advection by the fluid velocity v and a diffusion flux, where D denotes the diffusion constant of the droplet
material in the two phases.

The chemical reaction is described by the concentration-dependent rate s.(c) which in general is a nonlinear
function of c. For simplicity, we linearize the chemical reaction rates in the vicinity of reference concentrations
¢{” in each phase:

s1(0) ~ —ki(c — ) + 1, )

where ¢ are the equilibrium concentrations that coexist at equilibrium across a flat interface. We have defined
thereactionrate vy = s (cio)) and the reaction constants k+ = ds (cj(f)) /dc. We focus on the case of positive
coefficients k. > 0and vy > 0, where B is produced outside the droplet, and degraded inside, see figure 1.

The hydrodynamic flow velocity v obeys Stokes equation of an incompressible fluid,

n.V* = Vp, 4)

which accounts for momentum conservation 9,0,3 = 0, where the stress tensor is given by
Oap = Ny (OaVs + Osva) — pOap. Heren, denotes the fluid shear viscosities inside and outside of the droplet.
The pressure p plays the role of a Lagrange multiplier to impose the constraint V - v = 0.

The bulk equations (1)—(4) are connected by boundary conditions at the droplet interface which we
parameterize in spherical coordinates by the radial interface position R(6, ¢) as a function of the polar and
azimuthal angles 6 and ¢. The stress boundary conditions read

O(R) — 0, (R) = 29H (R) (5)
a(R) — o (R) =0, (6)

where H(R) is the local mean curvature of the interface and yis the droplet surface tension. The stresses at the
interface on the inner and outer side of the droplet are denoted by G'(j;ﬁ(R). The tensor indices n and t refer to
tensor components normal and tangential to the interface, respectively. The normal and tangential tensor
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components are defined as o5, = n, aiﬂnﬁ and 0, = n, Uigtﬁ, where 1, is a unit vector normal to the surface
and f,, is a unit vector tangent to the surface. Equation (6) is valid for all tangent vectors and summation over
repeated indices is implied. Using no-slip boundary conditions, the velocity field is continuous at the interface,

viR) = v (R). ()

The concentration field cis discontinuous across the interface with values given by
c(R) =Y+ BAH®) ®)
ci(R) = ¢ + BiyH(R) ©)

which are set by the physics of phase coexistence and a local equilibrium assumption. The coefficients
(4 describe the effects of the Laplace pressure on the equilibrium concentrations at phase coexistence. In the
presence of fluxes at the interface, the interface moves in normal direction. The radial growth velocity is

dR n j(R)—j"(R

= , (10)
dt n-e ¢ (R)— ci(R)

where n is a unit vector normal to the surface and e, is a unit vector in radial direction. Equation (10) captures
both convection of the interface by flows and droplet growth and shrinkage by addition or removal of material.

We find non-equilibrium steady state solutions to equations (1)—(10) with a spherical droplet of stationary
radius R and stationary concentration field ¢ (r), where ris the radial coordinate, see appendix A. The stationary
pressure p exhibits ajump 27/R across the interface and no hydrodynamic flows exist, # = 0. An example for a
stable non-equilibrium steady state with steady state concentration profile inside and outside the droplet of
radius R is shown in figure 1.

We first discuss the properties of these stationary states as a function of external supersaturation
€ = v, /(k+Ac) and the dimensionless reactionrate A = v_7/Acinside the droplet. The supersaturation is in
our system generated by reactions outside the droplet and in steady state corresponds to the concentration for
which s, = 0. Here, Ac = ¢ — cio) and we have introduced the time scale 7 = w?/D.., where w = 63,7/Ac
is a characteristic length scale. The stationary radii as a function of supersaturation € are shown In figures 2(A)—
(C) as solid lines for different values of A. For values of e smaller than a threshold value €, no stationary radius
exists. For values € > ¢, two steady state radii R, and R; exist, which become equal at €, where they approach a
value Ry. The smaller steady state radius R, is a critical nucleation radius similar to the critical droplet radii
found in passive systems. The larger radius denoted R; stems from the interplay of phase separation and
chemical reactions [26, 39]. As the supersaturation reaches a value ¢, = /(D-k_) /(D k)1 / (k_Ac), the
stationary radius R; diverges.

We can find simple expressions for the stationary radii in the limit of small A while keeping the ratios
v_/(k_Ac)and k, /k_ ofreaction parameters fixed. In this limit, the chemical reactions fluxes vanish as s o A
and the threshold value €, vanishes as ¢, oc A'/>. The critical nucleation radius then behaves as R, =~ w/(6¢)
and the larger steady state radius R, ~ w (3¢ A)!/2 where ¢y < € < €., see figure 2(B) and appendix A.5.

The steady state solutions are independent on the fluid viscosity, however the droplet dynamics is affected by
hydrodynamic effects. We now investigate the role of hydrodynamic flows on chemically driven shape
instabilities that can give rise to droplet division. We perform a linear stability analysis at the stationary state
givenby X = (¢, R, p, ¥) for small perturbations 6X = (6c, 6R, &p, &v). The dynamics of these perturbations
can be represented using eigenmodes

0X = Z EntmXnim €nim? (11)
n,l,m
with Xy = (¢t Yims RYims Py Yim> Vim)> where Y, (6, @) are spherical harmonics with angular mode indices with
I=0,1,..andm = —I,...,L. Theindexn = 0, 1, ... denotes radial modes. The eigenmodes exhibit an
exponential time dependence with a relaxation rate given by the eigenvalue fi,,;,,,. The mode amplitudes are
denoted €,,,,,- The concentration modes are characterized by the radial functions c,,(r). The pressure modes are
described by p/(r) and the velocity modes vy, (r, 6, ©) can be expressed as

Vim = Vi Yim + v W, + v D By, (12)

where Y,,,(0, ) = e, Vi, U,(0, ) = rVY,,, and ®,,(0, ¢) = e, x ¥}, are vector spherical harmonics [45]
and the radial functions v}, (1), vlﬁf (r)and v,(ri) (r) characterize the velocity field. The radial functions can be
obtained by solving the linearized dynamic equations using the corresponding boundary conditions, see
appendix A. The Stokes equation can be solved for a given shape perturbation independent of the concentration
field so that the velocity field and pressure field is independent of the radial mode n. The radial part of the
concentration field obeys a Helmholtz equation with an inhomogeneity that stems from hydrodynamic flows.
The homogeneous part is solved by modified spherical Bessel functions and the inhomogeneous solution can be
found using Greens functions. Using the dynamic equation for the shape changes of the droplet equation (10),
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Figure 2. Stationary radii and onset of shape instability. (A)—(C) Stationary radius as a function of supersaturation for different
reaction amplitudes A = 1078, 1077, ..., 10'. The stationary radii (lines) are independent of the dimensionless viscosity
F = wn_/(~y7), while the onset of instability (red dots, connected by dotted red line) for the different curves varies in the three figures,
which show dimensionless viscosities F = 0o, 1000, 10 (left to right). The blue line colors mark stable, the red ones unstable
stationary radii with respect to the elongational | = 2 mode. In panel (B) the scaling behavior of the nucleation radius R, and the
stationary radius R; are indicated. (D)—(F) Stability diagram of stationary droplets of size R;, as a function of reaction amplitude A and
supersaturation e for different dimensionless viscosities F = 0o, 1000, 10 (left to right). For small supersaturation and large reaction
amplitudes, no stationary radius exists (white). For large supersaturation, the stationary radius diverges (gray). In the region between
these regimes, the stationary solution can be stable (blue) or unstable (red) with respect to shape perturbations of the = 2 mode. For
decreasing F, the stable regime grows, and the minimal supersaturation €” at which an instability can be found increases, as well as the
corresponding reaction amplitude A™. The scaling relations (dashed lines) for the regime of stable droplets and the onset of instability
are indicated, with prefactors according to appendix A.5. (Parameters: . /n_ = 1,k /k_ = L,v_/(k_Ac) = 1,D,/D_ =1,
B =B,c"=0)

we obtain an equation for the eigenvalue 4,1,

(R R (R
g = R i—t(z”@) + —C’”(R”) - %(E”(R) + 2 )). (13)

R c

Here, the primes denote radial derivatives. Note that equation (13) is an implicit equation for the eigenvalues
nim because the radial concentration modes c,,(r) depend on fi,,y,,,, see appendix A. Equation (13) is independent
of the index m, therefore the degeneracy of an eigenvalue 11,/ is atleast 2/ + 1. When all 1, are negative, the
spherical shape is stable. The modes with I = 0 correspond to changes in droplet size without flows. They are
always stable for R = R, and unstable for R = R,. Thus droplet smaller than R, will vanish and droplets larger
will grow towards the size R;. Thus we consider the stability of R = R; in the following. The modes with = 1
do notinvolve shape deformations of the droplet and are thus not associated with flows. There always exists a
marginal mode with j;_; = 0 corresponding to overall translations where the droplet and all concentration
fields are displaced and then stay in the new position. Here we consider shape instabilities for which a mode with
I > 1becomes unstable. Because shape deformations induce flows, this instability depends on the dimensionless
viscosity F = wn_/(y7), as well as the ratio of viscosities in the two phases, 1, /7_.

If we increase the supersaturation e while keeping the other parameters fixed, the steady state can become
unstable with respect to the mode I = 2 for a critical value € = €. In figures 2(A)—(C), the onset of instability
1 = 0for thelargest eigenvalue p of the stationary radius is shown as a red dot, and unstable radii are indicated
by red lines. Different lines correspond to different supersaturations, and the panels show different values of F.
In figures 2(D)-(E), the corresponding stability diagrams of stationary droplets are shown as a function of the
supersaturation and the reaction amplitude for different values of F. For large A and small ¢, no stationary radius
exists (white regions), so that any droplet would shrink and disappear. For large ¢, the stationary state diverges
(gray regions). Spherical droplets are stable in the blue regions. Stationary spherical droplets are unstable inside
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the red region, the surrounding black line marks the shape instability with respect to the | = 2 mode. The region
where spherical droplets undergo a shape instability exists for ¢ > ¢*, which depends on F. The value of A for
which the shape instability occurs at € = ¢* is denoted A*, see figure 2(E).

For small A, the onset of instability can be describes by simple scaling behaviors. In the limit of small A and
for e < €y, wefind €* oc F~1/2and A = A* with A* ~ F~3/2 (compare figures 2(E)—(F)). For A < A*,
hydrodynamic flows govern the onset of instability which occurs at a value of A which behavesas A o ¢ ' F 2.
For A > A", hydrodynamic flows can be neglected as compared to diffusion fluxes and the onset of instability
occurs for A oc €. These two scaling regimes are indicated in in figures 2(D)—(F) by dashed lines. A derivation of
these results including prefactors is given in appendix A.5.

We next address the question whether the shape instability found in the linear stability analysis can indeed
give rise to droplet divisions in the presence of hydrodynamic flows in the nonlinear regime of the dynamics. We
use a Cahn-Hilliard model [46] for phase separation dynamics, extended to include chemical reactions and
hydrodynamic flows, that can capture topological changes of the interface. We include chemical reactions viaa
source term linear in the concentration as well as advection by the hydrodynamic flow which is described by the
incompressible Stokes equation. Using a semi-spectral method [47], we obtain numerical solutions in a cubic
box with no-flux boundary conditions, see appendix B.

Starting from a weakly deformed spherical droplet, we find regimes where the droplet disappears, where it
relaxes to a stable spherical shape and where it undergoes a shape instability, consistent with the linear stability
analysis of the effective droplet model. The transitions between these regimes occur for parameter values close to
those predicted by the linear stability analysis. In the unstable regime, droplets typically divide. This shows that
the droplet division reported previously can also occurs in the presence of hydrodynamic flows. Figure 3 shows
snapshots of the droplet shape together with corresponding hydrodynamic flow fields on the symmetry plane of
adividing droplet at different times. At early times when the droplet deformation is weak, the flow field is similar
to the ! = 2 mode obtained from the linear theory, figure 3(A). As the droplet elongates and its waistline shrinks,
the flow field becomes more complex, see figures 3(B), (C). The flow field shown in figure 3(C) exhibits two
additional vortex lines that form rings around the axis of rotational symmetry. Similarly, after division, two
further vortex rings occur, see figure 3(D). Interestingly, for small deformations the hydrodynamic flow
direction opposes the directions of interface motion at the main droplet axes, see figures 3(A), (B). For larger
deformations at later times the flow switches its direction along the long droplet axis where it assists interface
motion. At the waistline, the flow velocity becomes small, see figure 3(C). After division, the flow field between
the daughter droplets has very small magnitude, while strong flows at the outer sides move the droplets apart
figure 3(D).

This example shows that division of active droplets can occur even if hydrodynamic flows that oppose
division are taken into account. Because flows act in opposition to the initial deformation of the sphere, the
linear stability analysis already provides the key information of whether droplet division can occur for a given
value of dimensionless viscosity F, see figure 2. This raises the question under what experimental conditions
active droplets would become unstable and division could be observed. Ignoring hydrodynamic flows, F — oo,
it was shown that oil-water droplets and soft colloidal liquids or p-granules with sizes of a few micrometers
could divide in the presence of chemical reactions [39]. To address the influence of hydrodynamic flows, we have
to estimate the dimensionless viscosity F = wr_/(y7) =~ kg T /(67ywa), where we have used 7 = w*/D and
D ~ kgT/(6mna) with molecular radius a. Thus, Fis an equilibrium property of the phase separating fluid. For
an oil-water system, we estimate F ~ 0.1, see appendix C. For soft colloidal liquids or p-granules, we estimate
values between F =~ 10-10*. We can discuss these values using the stability diagrams in figures 2(D)—(F). Oil—
water like droplets with F ~ 0.1 are unlikely to divide, as the unstable region in the stability diagram is very
narrow. For soft colloidal systems with F ~ 1010, droplet division might be experimentally observable. We
can estimate typical reaction rates required for division to occur based on the reaction rate A* for which the range
of supersaturation is maximal. The value of A* corresponds to a reaction rate in the droplet of the order of
v_ = 10*mM s, see appendix C. A comparison with reported enzymatic reaction rates [48] suggests that
such values can be achieved in real systems.

We have shown that spontaneous division of chemically active droplets involves mechanical work against
surface tension as droplets deform. Active droplets thus can transduce chemical energy to mechanical work and
droplet division is therefore a mechano-chemical process. The surface tension of the droplet creates pressure
gradients as the droplet becomes non-spherical that lead to hydrodynamic flows. Because the flows generated act
against the shape deformation, droplets divide only for sufficiently large viscosity or sufficiently small surface
tension and sufficiently large reaction rates. We show that the dependence of the onset of stability on parameters
is captured for small reaction fluxes by simple scaling relations. Our work shows that droplet division would be
suppressed in oil-water systems due to large surface tension and low viscosity. However it could be realized in
soft colloidal systems for chemical reaction parameters that could be achieved experimentally. Furthermore
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Figure 3. Numerical solution in 3d of an extended Cahn—Hilliard model with chemical reactions and hydrodynamic flows reveals that
droplets can divide despite the presence of hydrodynamic flows. Panels (A)—~(D) correspond to time points t/7 = 100, 2100, 2700,
2800, respectively, where 7 = w?/D1is a diffusion time, with diffusion constant D and interfacial width w. The dynamic equations
were solved numerically in a three-dimensional box. Shown are two-dimensional cross-sections of the droplet shape (black) together
with streamlines (gray). Arrows (colored) indicate the direction and magnitude of the flow (normalized by respective maximal
velocities ¥y - w/D = 0.0016 (in A), 0.0048 (B), 0.0034 (C) and 0.0047 (D)). (Parameters: F = 24,A = 8 x 10>, ¢ = 0.2,

n/ny = 1,0 /Ac= 0,k /k=1,v_/(k_Ac) = 0.8).

flux-driven droplet divisions could be observable in biological systems, as both chemical reactions and phase-
separating membrane-less organelles with low surface tensions can be found within cells.

Appendix A. Effective droplet model with hydrodynamic flows

A.1. Stationary state of a spherical active droplet

Here, we discuss stationary solutions to equations (1)—(10) in the main text with spherical symmetry and
without hydrodynamic flows # = 0, where the bar indicates a steady state value. In this case, the pressure is
constant both inside and outside the droplet, with a pressure difference due to Laplace pressure between the
inside and outside of the droplets,

_ 2
P=h o+ % (A1)
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The steady state concentration profiles in the presence of chemical reactions are given by [39],

En) =415+ k(1) (A.2)
+
amz—%ww@+AMMu, (A3)

where iy(x) = 2sinh(x) /x and ko(x) = e */x denote modified spherical Bessel functions of order zero of the
first and second kind, respectively. The characteristic length scales I = (D./k)'/? are set by reaction rate
constants and diffusion coefficients. The parameters A are determined by the boundary condition at the
droplet interface, equations (8) and (9)in the main text,

A:lﬂ—i}4+— A4

B [R ki) ko(R/Ly) A9
Y e/C R 2 W

A*_(R +kjm@ﬂ9' (A2

Stationarity of the droplet radius R implies
D,¢.(R) = D.¢'(R), (A.6)

see equation (10) in the main text. Note that this equation typically has zero, one or two solutions for a given set
of parameters.

A.2. Linearized dynamics

We introduce small perturbations to the spherically symmetric stationary state, with p = p + 6p, v = év,
¢ = + 6cand R = R + 6R and write the dynamics of these perturbations to linear order. The linearized
dynamics reads

Vop = n, Abv (A.7)
V.sv=0 (A.8)
0:6¢c = —6v,&' + DLV?6c — kibc (A.9)

8M:m®+§wﬂ®fammw
C
+ AL[D+8,5C+(R) — D.3,6c (R)]. (A.10)
C

Here év, denotes the radial part of the hydrodynamic velocity. With éc_ and éc, we denote perturbations of the
concentration field inside and outside the droplet. The same notation holds for the other fields. In this linear
analysis, boundary conditions apply at the stationary radius R,

6c+(R) = Biy6H — CL(R)4R, (A.11)

with perturbation of the curvature SH = H(R) — H(R).
The linearized dynamics can be decomposed in spherical harmonics, see equation (11) in the main text. The
curvature perturbation then takes the form

0H = Z %Enlm Yim’ (AIZ)

nlm

withh, = (P + 1 — 2)/2.

A.3. Hydrodynamic eigenmodes of the linearized dynamics
We can expand the hydrodynamic eigenmodes using a basis of vector spherical harmonics, see equation (12) in
the main text. The velocity boundary conditions equation (7) in the main text for the mode amplitudes read

0= v (R) — vj, (R (A.13)
0= vVT(R) — v (R) (A.14)
0= vPTR) — v2~(R). (A.15)

The stress boundary conditions (see equations (5) and (6) in the main text) at the interface read

0 = 23R = pL(R) = 20, R+, R) — 216t (A.16)
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B r+/p D+ R)
0— W+y/(R Vi (R) Yy ( Al
ml(V ) (R) + z z (A.17)
(1)* R
_n_l(v(l) ) (R) 4 Vlm (R) lmR(R)] (A.18)
_ (2)+ _ (2) R
0= 77+[(V1(,121)+)'(R) R( )] - ﬁ_l(Vz(ri)_)'(R) R( )] (A.19)

We solve the radial profiles of the modes with a polynomial ansatz and exclude functions that diverge for
r — 0orr — oo inside and outside the droplet, respectively. The pressure is then given by

r 1+1
Py, (1) = va(E) (A.20)
-1
p;(r) = 7#3(%) . (A.21)
For the hydrodynamic flow velocity we obtain
I+1 -1
Vi (r) = nl[ Cl(%) - fa(%) ] (A.22)
1)— vl 1+3 (r)lle I+1 (r)l_]
Vi (1) = [l(l T 1)fc1 T l)fca (A.23)
v (r) =0 (A.24)
and
~ - P2
Vlrr:tr(r) = n_[_fcz(i) + fc4(§) :| (A.25)
-1 —1-2
Dby — 1 (L)
"= [l(l + l)fcz( ) T ] (4.26)
v2H(r) = 0. (A.27)

Here, we have defined
(=1D0+ DI+ 2)2L +3)

- A28

Ja AQPE + 4]) + Q1 + 41 + 3) (A.28)
10— DI +2)2l—1)

B A29
b= TP - /A (A29)

1 =D+ DHd+2)
fa = 2AQE+ 4l + (21> + 41 + 3) (A.30)
fo = 11— DI+ DA+ 2) )

2AQE+ 1) + QP2 —2)
£z 1 10 =D+ DA+ 2)(AQP + 41+ 3) + 2P + 41) (A32)
G2 (AQER + 1) + 22 — 2)(AQE + 4]) + Q12 + 4l + 3)) '

1 =D+ DI +2)AQP -2) + (2P + 1)

= , A.33
Jea 2 (AQE + 1) + 212 — 2)(AQP + 4]) + (212 + 4] + 3)) (4.33)
where A = 7, /n_ denotes the ratio of the viscosities inside and outside the droplet.
A.4. Concentration eigenmodes
The equation for the radial part of the concentration eigenmode is
1, ., 1d,d o l(l+1)]
—v/()d'(r) = | ——r*— — N\ — Cn A.34
Dil()() [err ar nl » 1(r) (A.34)
with
= (k+ + pt,))/Dx. (A.35)
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The boundary conditions at R are
_ h _ _
en(Re) = yBir = RE(R). (A.36)

Theleft-hand side of equation (A.34) constitutes an inhomogeneity
+ 1 r =/
fr)=——v(ne{). (A37)
Dy

The solution ¢5(r) of the inhomogeneous equation (A.34) that satisfies the boundary condition equation (A.36)

can be constructed from a particular solution ¢, o(r) of the inhomogeneous equation to which solutions cain()

of the homogeneous equation with fli =0 are added to satisfy the boundary conditions, equation (A.36). This
can be expressed as

Cu(r) = uCu (1) =+ € p(1) (A.38)
Cai(r) = cuea W) + ¢ p(1), (A.39)
where the coefficients v, read
+ £ (5
ai- — ¢, ,(R)
af = —— (A.40)

Crih(R)

with a/* = ¢;i(R).

We are especially interested in the case of unstable modes with (1,,; > 0. Therefore we focus on the solution
of equation (A.34) for A3 > 0and k;. > 0.In this case, the homogeneous equation with fli = 0isamodified
Helmbholtz equation which is solved by modified spherical Bessel functions, c,; ,(r) = #;(\,;7) and
crﬁ) W(r) = ki(\fjr), where i;and k; denote the modified spherical Bessel functions of first and second order,
respectively. The particular solution of the inhomogeneous equation can be obtained by a Green’s function
approach,

(1) = Aki ) j; i) f; () r31dr,
—_ — R — — 2
+ Xt [ g f; (13 1dr, (A41)
i) = Nk [ T, (3 1dn
+ NG [ k) ) r1d, (A42)
with the radial part of the inhomogeneity fli (r) given by equation (A.37). The explicit calculation of these
functions has to be handled with care, since the functions k;and i; have divergences for large and small arguments

r that cancel in the final result but can still lead to numerical difficulties when evaluated directly.
The derivative of the concentration profile at R can be expressed as

_ a, —
(RO = %gl,i()\an)

¢,,(R) o o
+ T ) [gl,k()‘an) - gz,i()\an)] (A.43)

By alJr +R
cy(Ry) = fgz,k(/\an)

(R _ _
+ CZ’I’R (g, AR — g AR, (A.44)
with

(%) = i () (A.45)

1(x)

xk/ (x)
= ) A.46
gz,k(x) k() ( )

Using the equation for the shape perturbations (A.10), and using equations (A.43) and (A.44), we obtain
equation (13) in the main text. This equation determines the eigenvalue fi,,,, of the hydrodynamic modes.

9
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A.5. Scaling relations in the limit of small reaction fluxes
In the limit of small chemical reaction fluxes s.. we obtain simple scaling expressions for stationary radii and
their shape instability conditions. Here we present the method and discuss the results.

A.5.1. Stationary radius.  Here we discuss the stationary radius in the limit of small chemical reaction amplitude
A = v_71/Acwhile keeping the ratios v_ /(k_Ac)and k, /k_ ofreaction parameters fixed. This corresponds to
the curves R (¢) shown in figure 2(A) for different values of A. We can identify two regimes in the figure. The first
is the region of small €, € ~ €, which corresponds to the minimum of ¢ (R). The second is the region of €, where
the stationary radius diverges. For A — 0, we see that €, goes to zero while e, stays constant, and both are
connected by a straight line that indicates scaling behavior of R = R;. This increasing separation between ¢y and
€~ (and the corresponding stationary radii) in the limit of small A means that we can analyze the behavior of the
stationary radius in these two regimes separately. For this we consider equations (A.2) and (A.3) for the
concentration field and (A.6) for the stationary radius. We can rewrite (A.6) to obtain an expression relating the
supersaturation to the stationary radius,

R R
_ By +(ﬁ:v L )QTCOthT_I.

= — — = (A.47)
AcR AR k_Ac)D; 1+ lﬁ

In this limit of small A, the characteristic length-scales of the concentration field become large with I oc A~1/2,
To find scaling regimes in equation (A.47), we change variables in equation (A.47) from (A, R) to (4, R) with
R = RA*/w, where ais an exponent. Fora = 1/3 we find the behavior of e(R) close to €, and Ry,

¢ = %ﬁ” + %ﬁz + O(A/9), (A.48)

where ¢ = € A~'/? becomes independent of A for small A. This function describes the supersaturation as a
function of radius around the threshold value €,. Due to the inverted presentation ¢ (R) instead of R(¢) the
function captures both the nucleation radius R, and the larger radius R;. The threshold value €, can be obtained
from equation (A.48) by minimizing ¢ for fixed A as 9¢ / IR = 0.Itbehaveas

€0 = 4°23A3 4 O(AV?), (A.49)

For large and small R, equation (A.48) describes the steady radii R, and R, respectively, for which ¢ > &. For
large ¢, the critical radius obeys

R~ (A.50)
6¢
while the larger stationary radius is
R, ~ w(3e A2, (A.51)

In figure 2(B), the scaling behaviors given by equations (A.51) and (A.50) are indicated by dashed lines. Ate = ¢
both radii meetat R = R, where
Ry = w(4A)'/3 + O(A™1/2). (A.52)

Fora = 1/2, R/l becomes independent of A and
R R
—coth (—) -1
_D v 1 Y Lo, (A.53)

D+ k,AC 1+ 5

I

For R/l < 1, the stationary radius obeys equation (A.51) and is thus the larger stationary radius R;. For
R/1L > 1, we obtain the divergence of R; as e approaches ¢, with

e = | 2K (A.54)
D+k+ k_AC

A.5.2. Shape instability. 'We now discuss scaling relations for the onset of instability in the (A, &) planein the
limit of small A, which give the trends shown as dashed lines in figures 2(D)—(F). We use the scaling of the
stationary radius R = R, closeto eywith R = RAY/3/w, & = ¢ A"'/3and [, = 1,A"/?in equation (13) to obtain
A3 2 D, (I - Dg
iy = ——— + —( = 1) = —————=" + O(A9), A.55
Hotm R F 3 ( ) D R3 ( ) ( )
where fi,,, = 4, 7/A and Risrelated to & by (A.48). Here, d; = f., — f..,, where fc; and f; are defined in
equation (A.33) and

10
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D_

= A.56
& 1 (A.56)

withh; = (P + | — 2)/2. For large mode index ,

I

=— 4+ 01/ (A.57)
: 2(my/m_+ 1) /

We now consider conditions for which y,,,, = 0 for small A and the mode (1, [, m) becomes unstable. Using
(A.48)1in (A.55), we find a relation between ¢ and R at the onset of instability z,,;,,, = 0,

o4 1p. (l + &lgl)ﬁ*1 + O(A/9). (A.58)
20— 1D F 6 D2

This curve captures the scaling behavior of the onset of instability for different parameters in the R — ¢ plane,
corresponding to the red dotted line in figures 2(A)—(C).

We now focus on finding the scaling relations for the onset of stability of the stationary radius as function of
A, eand F, as shown in figures 2(D)—(F). At this onset, both (A.58) and (A.48) need to be satisfied. We use both
equations to eliminate R. We find a crossover regime with relations A* ~ F~3/2between the region where
hydrodynamic flows are relevant (A < A*) and where they can be neglected (A > A*). For A > A™ we find for
Lnim = 0asrelation between A and €

8 3

A~54—=¢°, (A.59)
(1+50)
P!
ForA < A*wefind
2
Ax L2 =D) pe (A.60)
3 d

In figures 2(D)—(F), the dashed lines indicate these two scaling solutions in the limit A — 0and F — oo for
I = 2, which we find to be the first mode to become unstable. We find that the general trends of the stability
diagram is captured well, with small deviations from the full solution of equation (13) for small €, and larger
deviations in the regime close to ¢,, where the scaling of the stationary radius R, oc A~!/3breaks down.

Appendix B. Continuum model for active droplets with flows

B.1. Continuum model for active droplets
We study an extended Cahn—Hilliard equation with chemical reactions coupled to Stokes equation for
hydrodynamic flows at low Reynolds numbers. We consider an incompressible fluid containing two
components A and B, with number concentration fields ¢4 (r, t) and ¢ = ¢g(r, t) that depend on position r and
time ¢, and with molecular masses 11, and mg and molecular volumes v, and vz. We are interested in the case
where component A forms the background fluid and B is a droplet material that forms droplets by phase
separation. Additionally, chemical reactions convert the two components into each other, A = B. For
simplicity, we consider mass and volume conserving chemical reactions with m, /v, = mp/vg, which encodes
that volume is conserved in the reaction if mass is conserved. Together with incompressibility, this implies that
the mass density p = muca + mpcgis constant. Therefore, we can describe the system by the concentration
c(r, t) of the droplet material B only.

We use the following double-well free energy density [46]

b
2(Ac)?

flo) = (c — D)2 — 0y + g(VC)Z, (B.1)
with Ac = |¢© — ¢{?|. Here, the positive parameter b characterizes molecular interactions and entropic
contributions. This free energy describes the segregation of the fluid in two coexisting phases [49]: one phase rich
in droplet material with ¢ ~ ¢® and a dilute phase with ¢ ~ ¢'*’. The coefficient r is related to surface tension
and the interface width [46].

The state of the system is characterized by the free energy

Flel = [@r ), (B.2)
where the integral is over the system volume. We work with an ensemble T, p, chere, where T denotes

temperature and the system is considered isothermal. The chemical potential i = 0F [c] /dc, governs demixing
and can be split into local and nonlocal contributions, i = i, — £ V*c with

11
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g = B0 (c — M — M2c— @ — ). (B.3)

The dynamics of the concentration field is described by [50, 51]
Oic=—V -j+s(c) (B.4)
j=—-MV[pi+ vc (B.5)

Here, M is a mobility coefficient of the droplet material and v is the hydrodynamic velocity. The source term s(c)
describes chemical reactions, for which we choose for simplicity a linear concentration dependence,

s(c) = v — k(c — ). (B.6)

The reaction flux given in equation (B.6) does not obey detailed balance with respect to the free energy, and thus
describes a situation where an external energy source maintains the system away from equilibrium [39].
The hydrodynamic velocity v can be calculated using momentum conservation,

0(pva) = 03045 (B.7)

with momentum pv,, and stress tensor o, 3, where o and 3 number Cartesian coordinates x, y, z. We can write
the stress tensor 0,5 as

d
Oap = — (PVa) s + Ufﬁ? + TaB> (B.8)
where the first term describes advection of the stress tensor, o7}, and ol 3 denote the equilibrium and dissipative
stress tensors. The equilibrium stress tensor is given by

UZ% = —(fic — f)oap — 03¢ — Pybagp. (B.9)

0(0,¢)
Here, fic — f is the osmotic pressure of the droplet material, and 6,5 denotes the Kronecker delta.
Incompressibility is enforced by an additional partial pressure P,. The deviatory stress tensor can be found as
thermodynamic force related to momentum by writing the entropy production rate,

1
aig = 217(1/&,3 — ngéa‘@) + 7'V 80 (B.10)

where nand 1’ denote viscosities, and v, 5 = (0, v + 05v,)/2 is the symmetric strain tensor.
In the Stokes limit, the inertial terms are neglected, D;(pv,) = 0, with advected derivative D, = 0, + v303
leaving 0 = 83(03% + O'ig). This yields [52]

NO%Va = 3f1y0ac — KcV2(0ac) + 04 Po. (B.11)

Equations (B.3)—(B.6) and (B.11) and incompressibility v, = 0 define the continuum model of active
droplets.

B.2. Numerical solution of the continuum model
We numerically solve the dynamic equations of the continuum model of active droplets, equations (B.3)—(B.6)
and equation (B.11) with equation (B.13) and incompressibility 0,1, = 0.

For this we use a spectral method in a 3d rectangular box. This has the advantage that in a spectral
decomposition, the spatial operators become simple multiplications with the wavenumber [47]. However, our
equations contain a number of nonlinear functions, which are easier to evaluate in real space. We therefore
transform forward and back in each time step.

To calculate the next timestep ¢; from the fields found in timestep ¢;_,, we use a semi-implicit Runge—Kutta
method [53] (method (2, 3, 3)) for the concentration field. This evaluates the gradient term in [i, equation (B.3),
implicitly, while evaluating the rest of i as well as the advection term of the fluxes, vc, explicitly. This effectively
means that the terms related to the interfacial profile are calculated implicitly, which allows for larger time steps
as an explicit scheme.

For the concentration field, we choose no-flux boundary conditions (9,,c = 0, where the derivative isin a
direction normal to the simulation box), which leads to a decomposition in cosine functions in the spectral
description. The Laplacian then is —k* for a mode with wave vector k. The Stokes equation can also be solved
using spectral methods. Here, no-flux conditions lead to v,, = 0. Additionally we enforce incompressibility
using a reprojection method. For this, the velocity field calculated by neglecting the partial pressure, P, = 0, can
be split into two parts (Helmholtz decomposition),

v=v+ 1=V x1p—-Vo (B.12)

12
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with vector field v and scalar field ¢, and velocity parts v, = V X 1pand v, = —V¢. With this, we find
V-v=A¢ (B.13)

and thus, using incompressibility, V - v = 0, we can calculate ¢. We thus find the incompressible part of the
velocity field

vy =v — Vo. (B.14)

We can evaluate this in Fourier space using a spectral method. For a rectangular box aligned with the coordinate
system, we thus find that each velocity component v,, is decomposed by sines in one direction and cosines in the
other direction. Spatial derivatives convert a sine-description into cosines, and vice versa.

We normalize concentration, length, time and energy by Ac = ¢ — c}ro), w = 2(k/b)'/%, ty = w?/Dand
éo = kW (Ac)?/3, respectively, where the characteristic length scale is w = 2(x/ b)!72. The relevant
dimensionless model parameters are ¢\” /Ac, kty, and v_t,/ Ac. We choose ¢ /Ac = 0,kty = 1072,
vty =2 x 107>and n w*/(tyé;) = 2. Additionally, we use as box-length L/% = 100 in all 3 dimensions,
number of grid-points in one direction N = 128 and simulation time T/t, = 4 x 10°. For the time step, we
start with a timestep of At/t, = 10~ *, and double the timestep to a final step size of At/t, = 0.01.

We start with initial conditions R = Ry (1 + €Y, ), with Ry /w = 7 and ¢ = 1. The concentration field at
positions r is initialized by the function

c(r) = + tanh R B.15
(r) 5 5 ” ( )

cﬁ)) + c© cio) - d(r)

where d (r) is the oriented distance of r to the nearest point on the ellipsoid. The value of d (r) is negative for
points inside the droplet and positive for points outside.

B.3. Effective droplet model as a limit of the continuum model

We now discuss the relationship between the effective droplet model and the continuum model. To relate the
two models, we first use the continuum model to derive jump conditions for the concentration in the effective
droplet model in equilibrium. We then consider stress balance across this interface and derive stress boundary
conditions in the effective droplet model. Finally we discuss the dynamical equations in the bulk and at the
interface in non-equilibrium situations.

B.3.1. Derivation of jump conditions for equilibrium phase separation. ~ First we consider the phase separation in
equilibrium without chemical reactions in the continuum model.

In a one-dimensional system with a mean concentration ¢ with ¢” < ¢ < ¢, the free energy of the system
in equation (B.2) is minimized by the concentration profile

cﬁo) + c_(f) cﬁo) —

c*x) = tanh ﬁ, (B.16)
2 2 w

where w = 2(k/b)!/2 denotes the interfacial width and x is the normal distance to the interface. The

concentration profile describes two phases of concentration ¢ ¥’ and ¢ separated by a flat interface of width w.

The surface tension can be defined as
N = f . Flc*(x)] — %(F [c9] + F[c©] dx. (B.17)

For the free energy equation (B.2) with the concentration profile equation (B.16), this can be written as
v = fj; 1 (Vc*)2dx which yields v = (Ac)?/6 kb or [54].

This interfacial tension governs the concentration jump condition in the effective droplet model, which can
be derived as follows. To describe a curved interface, we consider two homogeneous phases with concentrations
c. For a finite volume V; with a droplet of size V and area A the concentrations c.. can be found by minimizing
the freeenergy F = f(c_) V + f(c, (Vs — V) + 4Awith OF /0c_|y = 0and OF/0V/|. = 0, where the
concentration of both phases are related by V;.¢ = Vc_ + (V; — V)¢, where ¢ denotes the average
concentration in the system. Thus for two phases to be in equilibrium, their chemical potential i and osmotic
pressure II = cfi — f need to obey

0= () — pley) (B.18)
0 = II(cy) — II(c_) — 27H, (B.19)

where H the mean curvature of the droplet and 2yH is the Laplace pressure. These equations determine the
concentrations in the phases c.. of coexisting phases [54].
For small Laplace pressures, we can express the equilibrium concentrations ¢, of a curved interface by the

concentrations of a flat interface ¢!* plus a small perturbation,
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Figure B1. Geometry for the force balance. We consider a spherical cap of the droplet interface, with a box with constant distance ¢ to
the interface inside and outside. The normal and tangential vectors n, t and s of the interface are shown, as well as the normal vector 7
of the box. The origin of the spherical coordinate system is the center of the sphere that describes the interfacial curvature, with radius
R, while 6, gives the polar angle of the cap.

c. =c9 4+ BAH (B.20)
¢y =+ BiH, (B.21)

where B+ = 2/(f"(c\”) Ac). For the free energy equation (B.2), we find 5. = 2/(bAc), which is related to the
interfacial width asw = 670, /Ac.

B.3.2. Stress balance across the interface.  We now consider stress balance of the continuum model across the
droplet interface to derive stress jump conditions at the interface in the effective droplet model. We discuss the
mechanical equilibrium in a small volume across a curved interface with alocal mean curvature H
corresponding to a (local) effective radius R = 1/H. We focus on the case where the interface is rotationally
symmetric around the considered point R, and where the curvature does not change along the interface. We use
spherical coordinates, where the radial vector e, is aligned with the (outward pointing ) normal vector n and the
tangential vectors ¢ and s are aligned with ey and ey, respectively (with the vector directions for ¢ = 0in the
limit # = 0). We consider a small box enclosing R where the outer and inner surfaces A, and A;, have a
constant distance of ¢ to the interface, and the lateral surface Ay, is at a constant angle 6, with respect to the
symmetry axis. The geometry is shown in figure B1.

Now let us consider the balance of the stress tensor equation (B.7) across the box, taking into account the
curved geometry. The stress balance ds0, 5 can be written as

0= ‘¢‘ dA 7igo,s, (B.22)

where avand (Fare Cartesian coordinates and 7i the (local, outward pointing) normal vector of the box-surface.
We can split this in three terms,

0= f dAout Oan — f dAinan + f dAjaOars (B.23)

where we used that the orientation of the normal vectors of the box coincides with the normal/tangential vector
of the interface.

On the inner and outer areas A;, and A, the stress tensor presented in equation (B.8) with equilibrium
stress tensor in equation (B.9) reduces to the form of the effective droplet model given after equation (6) in the
main text, as the gradient terms are negligible for 6 > w. We now consider the limit of a sharp interfacew — 0
with finite surface tension +, and consider the case of a small box of thickness §, which remains larger than the
interfacial width. The components o = x, y of equation (B.23) vanish by symmetry. For « = zwe find

0 = nR*sin? 0, ¢, — 7R*sin6, o, — 27R sin® 0, 7, (B.24)
where o are the stress tensor components of the effective model, equation (4), inside and outside the interface

at R. Integration over the lateral box surface Ay, yields the last term, f dA0,, = 27R sin® 0, v. We thus find

that the mechanical equilibrium of a curved interface introduces a Laplace pressure 2vH,

0=a, — o, — 27H. (B.25)
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We therefore recover the stress jump conditions of the effective droplet model, equation (6). Additionally, (B.25)
together with (B.19) implies that the partial pressure needed to satisfy incompressibility is continuous across the
interface, P;” = P; .

B.3.3. Dynamics of the effective droplet model. 'We now consider the dynamics of a non-equilibrium system with
adroplet. We show how the continuum model is related to the bulk equations and jump conditions of the
effective droplet model. For this we consider a droplet with a interface that is thin compared to the dynamical
length scales I, so that we can describe the interface by local equilibrium. In the bulk phases we focus on the case
where deviations from the equilibrium concentrations are small.

In the bulk phases, we expand the chemical potential equation (B.3) around the reference concentrations
c{”, The gradient term —x V>cin the chemical potential is important within the interface, but can be ignored in
the bulk phases, where the length-scales on which the concentration field varies are much larger than the
interfacial width. Thus we can describe the chemical potential by
di,

(o) de

o (c — "), (B.26)
whichis fi (c) ~ b(c — cio)) for our specific free energy. With this simplification, equations (B.4) and (B.5)
become the reaction-diffusion-convection equations (1) and (2) with diffusion constants D, = M (df,/dc)|, ©
or D = Mb. Similarly we linearize the chemical reaction rate equation (B.6) in both phases. As we already chose
alinear rate for the continuum model, we only need to relate the parameters k and v with the constants k. and
v, of the effective model, with k.. = k,v, = vandv_ = kAc — v.Inserting the linearized chemical potential
equation (B.26) into the equilibrium stress tensor (B.9) we find that momentum conservation in the bulk phases
is given by the Stokes equation (4) with viscosities .. = 7, where the pressure p is determined by the
incompressibility condition 0,v, = 0.

We consider the droplet interface to be in local equilibrium. We therefore obtain equation (8) for the jump
of the concentration field in the effective model. The incompressibility condition 0,v, = 0 implies
v, (R) = v, (R) atasharp interface, and we consider an interface without slip length, so that v~ (R) = v*(R). We
thus find equation (7) of the effective model. The normal stress balance in equation (6) is derived in B.3.2.

As alast point we need to find equation (10) for the interface movement. We consider the concentration
change in a box of width ¢ around the interface, see figure B1. We consider a box enclosing a point R on the
interface at the time # aligned with the normal and tangential directions of the interface at R. The interface may
move with normal movement 9,R (¢), with R(#) = R(¢) - n and normal vector 1, while the box stays at a fixed
position. The total change of material in the volume is given by

&deVc:fj;dAﬁ-j+deVs(c), (B.27)

where V denotes the volume and A the area of the box. For small w and finite § the concentration field c makes a
jump from the surface Ay, to A,y given by conditions (8) and (9) at R. Within each phase, we can express the
field by the boundary values at the interface equation (B.21) and a linear expansion,

{C(R(t)) + Ve (r, t) - (r — R(t)) inside droplet
c(r, t) ~

c(R(1)) + Veu(r, 1) - (r — R(1)) outside droplet. (B.28)

The chemical reaction is given in both phases by equation (B.6). For small ¢ and 6, we find for the left-hand side
of equation (B.27) that 6c vanishes to lowest order and

8, fv dV ¢ = Ar(c_(R(D)) — cs(R(D) IR + O(e) + O(By), (B.29)

where Ay is the area of the droplet interface enclosed by the box. For a spherical cap, A = 27 (1 — cos 6) R’
We further find that the source term due to the chemical reaction scales with the volume of the box, and thus
vanishes for a small box, fv dV s(c) = 0 + O(e) + O(Hy). The flux across the box can be expressed as

[ dAd-j = Aen - GLRE) = R + OC€) + O, (B.30)

where j,_(R(t)) denotes the flux at R inside/outside the droplet. We thus find the normal movement of the
interface,
A i (R(t)) —j, (R(t
o RO~ RO B
c-(R(®)) — c(R(1))
In the main text we use spherical coordinates centered at the droplet center. For a spherical droplet, the normal
and radial movement would thus be the same. For a deformed droplet, we need to consider the relation between
the normal interface movement, R(t) = R(¢) - n and the radial movement R(¢) = R(¢) - e,. At fixed angles 0
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Figure B2. Growth of shape perturbations of the | = 2 mode for different normalized viscosities F = nw/(y7) for the continuous
model (red crosses) and effective model (blue curve). The last data point (with arrow) corresponds to F — co. (Parameters:
A=8x10"2e=02,7_/n. = 1,V /Ac=0,k./k_ = Lv_/(k_Ac) = 0.8.)

and ¢, the interface movement is given by 9,R = ;R e,. Using 9,R = 9,R(t) - n, we find arelation between
the radial and normal movement, &,R = 8,R/(n - e,). This relation, together with equation (B.31), yields the
interfacial movement equation (10) presented in the main text.

We thus recover all dynamical equations of the effective droplet model from the continuum model based on
irreversible thermodynamics. Note that the specific choice of the free energy leads to specific relations between
parameters of the effective model such as D, = D_. Our derivation shows the relation between both models in
the case where the interface width w is small compared to the droplet size, R/w >> 1, and the chemical diffusion
length, 1. /w > 1. Additionally, we focused on the case where the concentrations in the phases are similar to the
concentrations in equilibrium and have small concentration gradients. These conditions are not valid in all
systems. Most importantly, the chemical reactions can drive concentrations far away from the equilibrium phase
concentrations cf). The resulting behaviors, such as the formation of new interfaces associated with instabilities
of the spinodal decomposition regime, are not captured in the effective droplet model.

B.4. Comparison of the droplet dynamics in the continuum model and the effective model
Here we compare the analytical predictions of the effective model for the instability with numerical calculations
of the continuous model for different values of the renormalized viscosity F. For this we numerically solved the
dynamic equations of the continuous model starting with a droplet with a small initial deformation of mode
I = 2. We fitted the dynamical behavior of the mode to an exponential function, with yields a numerical estimate
for the eigenvalue yi,. In figure B2 the resulting eigenvalues are shown, together with the eigenvalue of
corresponding parameters of the effective model. We find that the value of F for which droplet shapes become
unstable is very similar to the value predicted by the effective model. The eigenvalues are qualitatively similar to
the ones of the effective model, despite working in an a parameter regime where the interfacial width and the
differences of concentration within a phase cannot be considered very small, so that the models are not
necessarily comparable.

To generate the data in the figure, we initialized droplets with a small shape perturbation for different values
of F. All parameters and initial conditions were chosen as described in appendix B.2. We found that for F > 100
droplets divide, while they are stable for F < 1. For F = 10, the shape deformation was very slow, so that
division was not seen in the time interval T/7 = 4000. For 10 < F < 100, aswellas F = oo, we fitted radius
and spherical harmonic deformation to the concentration field using equation (B.15). For short times, the
droplet radius changes as the concentration field and droplet size go towards the stationary values. After that, the
shape deformation grows until the droplet deforms so strongly that the fitting fails. By hand we chose
intermediate time windows for the simulations where the size was stationary and the shape deformation small.
In these windows we fitted the deformation amplitude € (compare equation (B.15)) with an exponential
function, Aet2! + Bwith parameters A, Band eigenvalue y, to the = 2 mode of the shape deformation.
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Appendix C. Estimation of parameters

Here we estimate the hydrodynamic parameter for two physical phase-separating systems to understand the
importance of hydrodynamic flows on the droplet division in experimental systems. We discuss two cases,
water—oil phase separation, and soft colloidal systems (such as protein-RNA phase-separation in cells). We have
already estimated parameter values for both systems without the influence of hydrodynamic flows [39], where
we found that droplet division should be possible for realistic values of chemical reaction rates in both systems,
and that corresponding stationary radii would have sizes of a few micrometers. Here we estimate the value of the
dimensionless viscosity F for water—oil and soft colloidal systems, and compare them to the analytical phase
diagrams presented in figure 2.

To calculate the hydrodynamic parameter F for experimental systems, we need an estimation of the diffusion
coefficient of the droplet material D, outside the droplet, of the interfacial width w (which corresponds to
length-scale win the paper [39]), of the surface tension yand of the viscosity 7)_ inside the droplet. For water—oil
systems, the interfacial width is of the order of w ~ 1 nm and the diffusion constantis D, ~ 10 °m?s™". We
can estimate the surface tension as y & 102N m™, and the viscosity n_ ~ 107 N s m2[54, 55]. With these
values, we find F = 0.1. In this case droplet division is strongly suppressed, see figure 2 of the main text. For soft
colloidal systems, we estimate w ~ 10 nm, D, ~ 10" m?s"andy ~ 10 *N'm™ [1, 54]. The value of F
depends on the viscosity of the droplet. For values 77 ~ 10 > Nsm >, F ~ 10,and forn_ ~ 1-10N s m 2, we
have F ~ 10* Inboth cases droplet division is possible, but more easy to achieve for larger F. We convert A* to
the reaction rate v_ inside the droplet using the droplet concentration given in [39].

We can use equations (A.59) and (A.60) from the scaling analysis to estimate the instability of the concrete
parameter examples discussed in [39] under the influence of hydrodynamic flows. In these scaling equations, the
ratiosn, /n_andD_ B_/(D, [, )enter the calculation of A" and €" but we find that they do not lead to relevant
changes in the results. The scaling analysis thus yields results very similar to the estimation using figure 2.
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