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Probe particles in odd active viscoelastic fluids: How activity and dissipation
determine linear stability
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Odd viscoelastic materials are constrained by fewer symmetries than their even counterparts. The breaking
of these symmetries allows these materials to exhibit different features, which have attracted considerable
attention in recent years. Immersing a bead in such complex fluids allows for probing their physical properties,
highlighting signatures of their oddity and exploring the consequences of these broken symmetries. We present
the conditions under which the activity of an odd viscoelastic fluid can give rise to linear instabilities in the
motion of the probe particle, and we unveil how the features of the probe particle dynamics depend on the oddity
and activity of the viscoelastic medium in which it is immersed.
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I. INTRODUCTION

Chiral two-dimensional materials break parity symmetry
and display transport phenomena characterized by tensors
that are odd under index exchange. Such odd systems attract
considerable interest from a broad range of communities.
These include soft active matter, statistical physics and bi-
ological physics [1–15], fluid dynamics [16–22], complex
materials [23–27], electron fluids [28–30], and topological
waves [31–34]. Recent experiments have begun measuring
odd systems [6,11,30,35]. One of these odd phenomena is
odd elasticity [11,23]. Odd elastic solids can perform net
work under quasistatic cycles, implying that they are active
materials, as such phenomena can only occur in the presence
of a constant energy injection at the microscopic level. Such
energy injection, if not properly dissipated, can give rise to
linear instabilities [23,25]. Complex materials that exhibit

*charlie.duclut@curie.fr
†stefano.bo@kcl.ac.uk
‡r.lier@uva.nl
§j.armas@uva.nl
‖piotr.surowka@pwr.edu.pl
¶julicher@pks.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

elastic properties at short times and fluidlike ones at long
times are called viscoelastic. Odd viscoelastic systems were
first discussed in [12] in the context of active matter and
recently shown to exist also in a passive context, provided that
certain thermodynamic constraints are obeyed [3].

A powerful method of probing the physical properties of a
fluid is to observe the motion of a probe particle immersed
in it [36–38]. This is even more important for active odd
viscoelastic materials, for the following reasons: First, the
response contains signatures of the odd nature of the mate-
rial, such as odd lift forces orthogonal to the probe’s motion
[39,40]. Second, the viscoelastic nature of the system makes
the response in time to instantaneous external perturbations
nontrivial [41]. Third, activity can give rise to sustained mo-
tion of the probe particle and, potentially, instability in the
response to perturbations (see, e.g., Ref. [42]).

In this work, we shed light on these three points by looking
at the motion of a passive probe particle in an active odd
viscoelastic fluid (see Fig. 1). For symmetry reasons, isotropic
odd fluids only exist in two dimensions [43], and therefore we
focus on this case in this paper, although our methods could be
applied in higher dimensions. Moreover, lift forces vanish in
incompressible odd fluids [18] when no-slip boundary condi-
tions hold [44], but they can exist in compressible fluids [39].
To assess odd viscoelastic responses in a generic framework,
we therefore consider in the following a weakly compressible
fluid, and odd lift responses will also be discussed.

First, we derive the material properties of such fluid
from Onsager’s theory, and we show that activity intro-
duces interesting physics by breaking the Onsager-symmetry
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FIG. 1. Schematic picture of a probe particle moving with veloc-
ity U in an odd viscoelastic fluid, experiencing a drag force F‖ and a
lift force F⊥.

and thermodynamic inequalities that otherwise constrain the
stress-strain relations. We then unveil the conditions that grant
the stability of the motion of the probe particle when it is
embedded in an active fluid. After confirming that a probe in a
passive system has a stable trajectory, i.e., its velocity decays
at long times, we show that, within our linear approach, there
exists an intermediate regime where the probe motion through
an active system is still stable. For larger activities, a probe
that is subjected to an external force at an initial time becomes
linearly unstable. We also focus on the signatures of oddity,
which can be seen in the dynamics of the probe. We observe
that odd viscoelastic terms promote long-lasting oscillations
during the relaxation process after an instantaneous pertur-
bation. These findings provide tools to assess the degree of
oddity of a material by studying the motion of a probe inserted
in it.

II. PROBE PARTICLE IN AN ACTIVE ODD
VISCOELASTIC FLUID

A. Constitutive equations for the fluid

In this section, we discuss the material properties of the
two-dimensional odd viscoelastic fluid in which the probe
particle moves. For this purpose, we start with the total stress
tensor σ tot, which enters the momentum balance equation as

∂t g − ∇ · σ tot = fext. (1)

We have introduced the momentum g = ρv, with ρ and vi

the fluid mass density and velocity, respectively, and fext is an
external force density. Mass density is conserved and obeys
∂tρ + ∇ · (ρv) = 0. The total stress σ tot can be decomposed
into

σ tot = −ρv ⊗ v − P1 + σ s + σ a, (2)

where ⊗ is the outer product and 1 is the identity tensor. The
tensor σ s is the symmetric deviatoric stress, which incorpo-
rates viscoelastic contributions, and σ a is the antisymmetric
part of the stress [45].

For a passive odd viscoelastic fluid, the constitutive equa-
tions for the stress σ s and strain u tensors are found to be (see
Appendix A for more details, also on σ a)

σ s = νp : σ el + 2ηp : v, (3a)

Du

Dt
= −γp : σ el + νp : v, (3b)

where D/Dt is the corotational derivative, and v = [∇v +
(∇v)�]/2 is the symmetric part of the velocity gradient tensor.
The elastic stress σ el results from the local strain u within the
material and is obtained as σ el = δ f /δu, where f denotes the
free-energy density.

The objects νp, ηp, and γp in Eq. (3) are four-tensors that
are isotropic and symmetric under the exchange of the first
two as well as the last two indices, i.e., for a general four-
tensor β we have βi jkl = β jikl = βi jlk . Such a general tensor
can thus be characterized in two dimensions by a shear βs,
bulk βb, and odd βo coefficient (more details on the tensor
notation can be found in Appendix B). The four-tensor ηp

in Eq. (3) corresponds to all viscous corrections, whereas γp

incorporates plasticity or strain relaxation.
As a consequence of Onsager symmetry (see Appendix C

for its derivation for odd materials), the same four-tensor νp

relates the deviatoric stress to elastic stress and the strain rate
to the velocity gradient. We emphasize that the odd coefficient
ν

p
o is responsible for a passive and transient odd elasticity [3]

(while steady-state odd elasticity cannot be passive [23]). Fi-
nally, to qualify as a passive material, the coefficients entering
the four-tensors of Eq. (3) must satisfy [3]

ηp
s , η

p
b, γ

p
s , γ

p
b � 0, 2ηp

s γ
p
s �

(
νp

o

)2
, (4)

as dictated by the positivity of the entropy production rate.
In this paper, we go beyond passive systems and include

activity. This can be done in the Onsager framework, in the
spirit of active gel models, by introducing fuel consumption
at the microscopic level (see, e.g., Refs. [45,46]). Fuel con-
sumption can be represented by adding a thermodynamic flux,
the scalar reaction rate r, and its associated thermodynamic
force 
μ, which is the chemical potential difference of a
chemical reaction, to the description. Since it is an additional
thermodynamic force, one should supplement Eq. (3) with
terms proportional to 
μ, where, by symmetry, the propor-
tionality factor should be a rank-2 tensor. We thus add the
active contributions 
μ(ζ(1) : σ el + 2ζ(2) : v) to Eq. (3a) and

μ(−ζ(3) : σ el + ζ(4) : v) to Eq. (3b). In an Onsager frame-
work, the thermodynamic forces (here 
μ, σ el, and v) are
considered small, and the expansion of the thermodynamic
fluxes as a function of the forces is kept to the lowest order.
This means that the 
μσ el- and 
μv-terms are second order,
and one would therefore naively think that these terms should
be neglected. However, as we will show in the rest of the
paper, because these contributions are not bound by passiv-
ity constraints, even a small contribution can destabilize the
odd viscoelastic model, and therefore to correctly capture the
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qualitative behavior of the active viscoelastic system we must
retain them.

Finally, the constitutive equation for the stress σ s and
strain u tensors characterizing two-dimensional odd active
viscoelastic fluids read

σ s = ν : σ el + 2η : v, (5a)

Du

Dt
= −γ : σ el + ν′ : v, (5b)

where we have defined the active rank-four tensors ν = νp +

μζ(1), η = ηp + 
μζ(2), γ = γp + 
μζ(3), and ν′ = νp +

μζ(4).

Note that the effect of activity (
μ �= 0) is twofold: (i) it
can break the symmetry of the Onsager matrix, which happens
whenever ν′ �= ν. For this reason, ν and ν′ can be understood
as a nonequilibrium and nonreciprocal generalization of clas-
sical elasticity; or (ii) it can break the semidefiniteness of the
Onsager matrix.

When discussing the stability of the probe in Secs. III
and IV, we we will make use of the passive limit for the
generalized tensor objects, which can be imposed by setting1

2ηsγs � ν2
o , ν = ν′, (6)

and where ηs, ηb, γs, γb � 0 is always satisfied provided 
μ

is small.

B. Jeffreys model for the odd viscoelastic fluid

Having in mind the description of a probe particle embed-
ded in a viscoelastic fluid, we now show how Eq. (5) leads to
an odd Jeffreys model [47,48]. We consider a material with
linear elastic properties, and first use the identity

σ el = 2G : u, (7)

where G is the four-tensor of elastic moduli. Since Eq. (7)
is derived from free energy, it is not possible to have an odd
elastic modulus [23] and thus Go = 0. Note, however, that odd
linear couplings between the stress and the strain are present
in Eq. (5), and correspond to nonequilibrium corrections de-
rived following Onsager’s theory.

Solving for the strain u, we find that the constitutive equa-
tions (5) can be rewritten as(

I + τ1
D

Dt

)
: σ s = 2ηeff

(
I + τ2

D

Dt

)
: v, (8)

where I is the rank-4 identity and where we have used the
fact that the contraction of an odd isotropic rank-4 tensor
with a rank-2 tensor commutes with taking the corotational
time derivative. We have moreover defined τ1 = γ−1G−1/2,
ηeff = η + νγ−1ν′/2, and τ2 = (ηeff )−1τ1η, where four-tensor
algebra is given in Appendix B. Equation (8) describes an
odd active Jeffreys model, that is, a viscoelastic fluid with
two (odd) dampers and one (odd) elastic spring, as depicted

1Note that in this limit, activity has not necessarily disappeared
from the system, i.e., active agents might still be present. However,
from the point of view of the coarse-grained description, Eq. (5), the
viscoelastic fluid is indistinguishable from a passive system.

FIG. 2. Circuit representation of the odd Jeffreys model given in
Eq. (8) including dampers (λ1,2) and an elastic spring (E1). Each
element of this representation has odd and even contributions, and
can be represented as a rank-4 tensor (see the text for details). The re-
lation between the rank-4 tensors appearing in Eq. (8) and the circuit
rank-4 tensors is given by λ1 = η, E1 = νGν′, and λ2 = νγ−1ν′/2.

schematically on Fig. 2. Furthermore, one consequence of
the thermodynamic constraint (4) is that an odd Maxwell
model, for which τ2 in Eq. (8) vanishes, cannot be passive
[3]. Similarly, the odd Kelvin-Voigt limit (γs → 0, νo �= 0)
is also forbidden by thermodynamics in the absence of fuel
consumption.

In Laplace space, dropping the (nonlinear) vorticity contri-
butions to the corotational time derivative, we can write the
constitutive relation of the active odd Jeffreys model (8) as
[36,49]

σ s(s) = 2A(s) : v(s), (9)

where A(s) = η + (I + sτ1)−1 · νγ−1ν′/2 contains the shear
and odd components

As(s) = ηs +
(
γs + s

2Gs

)
(νsν

′
s − νoν

′
o) + γo(νoν

′
s + ν ′

oνs)

2
{
γ 2

o + [γs + s/(2Gs)]2
} ,

(10a)

Ao(s) = ηo +
(
γs + s

2Gs

)
(νoν

′
s + ν ′

oνs) − γo(νsν
′
s − νoν

′
o)

2
{
γ 2

o + [γs + s/(2Gs)]2
} ,

(10b)

Ab(s) = ηb + νbν
′
b

2[s/(2Gb) + γb]
, (10c)

where we have introduced the Laplace transform L[h(t )](s) =
h(s) = ∫ ∞

0 dt e−st h(t ) (using the same notation for the func-
tion and its transform). We will refer to the coefficients in
Eq. (10) as Laplace viscosities, as they can be seen as vis-
coelastic generalizations of viscosity in the Laplace domain.

To illustrate the physical meaning of the Laplace viscosity
tensor A(s), let us consider an even material with ν = ν ′. In
this case, As turns into

Ãs(s) = ηs + ν2
s

2γs + s/Gs
, (11)

which corresponds to the usual Jeffreys model, which is vis-
cous at very short timescales with viscosity lims→∞ Ãs(s) =
ηs, elastic on intermediate timescales, and again viscous at
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long timescales with viscosity lims→0 Ãs(s) = ηs + ν2
s

2γs
. Note

that the only role of activity, in this case, is to modify the
values of the different parameters compared to their passive
counterparts, while the physics is qualitatively unchanged.

From this simple discussion, we understand that the odd
viscoelastic Jeffreys model [Eqs. (9) and (10)] (i) is also
characterized by a viscous, fluidlike behavior at short and long
timescales; (ii) has three characteristic timescales in the shear
and odd sectors, and two in the bulk sector; (iii) can have
qualitative differences compared to the even Jeffreys model
since the sign of some effective parameters is not fixed (for
instance, the term νsν

′
s − νoν

′
o in As).

C. Probe particle

We now study the motion of a probe particle dragged in the
viscoelastic fluid with constitutive equation (9). As discussed
in the Introduction, isotropic odd materials only exist in two
dimensions, and we thus focus on this case in the following.
A natural setting for a two-dimensional viscoelastic fluid is to
consider a thin layer of such a fluid at the interface between
two bulk (even) fluids, for instance water and air [39,40]. For
simplicity, we consider this layer to be flat and infinitely thin,
such that the odd fluid can be described effectively as two-
dimensional.

The probe particle velocity U(t ) corresponding to an
applied time-dependent force F(t ) can be computed using
Laplace transforms as

Ui(t ) = L−1[Mi j (s)Fj (s)](t ), (12)

where Latin indices correspond to Cartesian coordinates,
and a summation over repeated indices is implied, and with
L−1[h(s)](t ) the inverse Laplace transform. The response ma-
trix Mi j (s) can be understood as a viscoelastic and therefore
s-dependent generalization of the drag and lift coefficients for
a purely viscous fluid. For simplicity, we consider only the
translational degrees of freedom of the probe, noticing that in
the incompressible limit and for rigid probes there is no odd
viscosity-induced torque [18].

To obtain the response matrix Mi j (s) of an odd viscoelastic
fluid, we first linearize to first order in vi and δρ = ρ − ρ0

the momentum and mass conservation equations. To discuss
weakly compressible fluids, we need to specify an equation of
state for the pressure, which at first order in δρ reads P = δρ

ψρ0
,

where ψ is the compressibility. Note that the incompressible
case, for which the pressure is independent of density, is
recovered by taking the limit ψ → 0 in the response matrix
Mi j (s). Then, using the constitutive equation (9), we obtain
the following coupled linearized equations:

ρ0svi = As(s)∂k∂kvi + Ab(s)∂i∂kvk

+Ao(s)εi j∂k∂kv j − 1

ψρ0
∂iδρ + f ext

i , (13a)

sδρ = −ρ0∂kvk . (13b)

Using a spatial Fourier transform with the convention h(x) =
1

(2π )2

∫
d2k h(k)eik·x, Eq. (13) can then be rewritten in matrix

form:

Gi jv j = f ext
i , (14)

with Gi j given by [39,40]

Gi j = k̂ik̂ j

[
sρ0 +

(
As(s) + Ab(s) + 1

ψs

)
k2

]

+ (δi j − k̂ik̂ j )[sρ0 + As(s)k2] + εi jAo(s)k2, (15)

where k = √
kiki and k̂i = ki/k. Having formulated the lin-

earized equations for a given Laplace frequency and Fourier
wave vector, we can then use the shell localization approach
[39,49,50] to obtain the linear response for a rigid disk-shaped
probe particle moving in the viscoelastic fluid. When no-slip
boundary conditions hold, the shell localization approach pre-
scribes that, upon identifying the probe particle velocity Ui(s)
with vi(|x| = 0, s), the response matrix is given by (more
details are in Appendix D)

Mi j (s) = 1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
dk kJ0(ak)G−1

i j (k, s), (16)

where θ is the angle of the wave vector, a is the disk radius,
and J0(z) is the zeroth Bessel function of the first kind.

For concreteness, and before discussing in detail the drag
and lift responses of a probe in an odd active viscoelastic fluid,
let us first relate this expression, Eq. (16), to the well-known
drag in an incompressible, even, purely viscous fluid in two
dimensions. In this case, the response matrix is diagonal and
can be written as Msimp

i j (s) = Msimp
‖ (s)δi j , where the drag co-

efficient reads Msimp
‖ (s) = 1

4πηs
K0(

√
τ0s), with τ0 = ρ0a2/ηs,

and K0 is the zeroth modified Bessel function of the second
kind. This expression can then be expanded in series of the
Laplace frequency s, leading to

Msimp
‖ (s)= −1

4πηs

(
log

√
sτ0

2
+ γEM

)
+ O(sτ0), (17)

where γEM is the Euler-Mascheroni constant. This last ex-
pression shows the expected divergence of the drag at
vanishing frequency, a signature of the Stokes paradox in two
dimensions.

III. LINEAR STABILITY OF A PROBE PARTICLE
IN AN ODD ACTIVE VISCOELASTIC FLUID

A. General case

Active viscoelastic fluids can give rise to sustained motion.
Therefore, the response of a probe placed into the medium
after an initial perturbation does not necessarily decay to
zero. At the level of linear response, such sustained motion
is signaled by instability, which appears in the long-time be-
havior of the probe velocity given by Eq. (12). Without loss of
generality, we consider an instantaneous perturbation applied
at t = 0, such that F(t ) ∝ δ(t ), where δ(t ) is the Dirac delta
function. The velocity of the probe after this initial perturba-
tion is given by

Ui(t ) = 1

2π i

∫ �+i∞

�−i∞
ds est

∫
d2k

(2π )2
mi(k, s)J0(k), (18)

where mi(k, s) = Mi j (k, s)Fj , and � is a real number such
that the integral over s is convergent. To discuss stability, we
need not focus on the precise expression of the velocity, but
we make the crucial point that mi(k, s) is a rational fraction
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in s. This implies that the long-term behavior of the velocity,
and therefore the probe stability, is determined by the sign of
the real part of the poles in s of mi:

Re(s∗
� (k)) � 0 ∀�, ∀k, (19)

where s∗
� (k) is a pole of mi; see Appendix E for details. In

the general case of an odd compressible viscoelastic fluid, the
poles of mi are roots of a high-order polynomial, which makes
further analytical discussion difficult. Nonetheless, Eq. (19)
provides a simple and powerful criterion to determine the
probe stability that can easily be used numerically. In the
following, Sec. III B, we discuss the case of an incompressible
fluid, where the analytical discussion regarding stability can
be continued.

Note finally that in the regions of the parameter space
where the inequality (19) is not satisfied, the motion of a
probe is not linearly stable: the passive probe is therefore set
into motion by the active viscoelastic fluid. To obtain physical
solutions at longer times, nonlinear corrections must then be
added to the description. The discussion of the form that
these nonlinear corrections should take and their impact on
the probe dynamics is left for future work.

B. Stability of probe motion in the incompressible limit

To continue our stability analysis while keeping the tech-
nicalities to a minimum, we now restrict ourselves to the
incompressible case. In this simpler case, odd lift effects are
absent [17,39], the tensor Mi j is proportional to the identity,
and the probe particle stability is determined by the poles of

r(k, s) = 1

4πηs

akJ0(ak)

τ0s + (ak)2As(s)/ηs
, (20)

with τ0 = ρ0a2/ηs. As shown in Appendix E, these poles in
the complex plane correspond to the roots of a third-order
polynomial, and stability can be discussed analytically. We
first discuss the simpler case in which Onsager symmetry is
enforced.

Onsager-symmetric fluid. We can take ν = ν′, and stability
is ensured iff

4γsηs − ν2
o + ν2

s > 0, (21a)

2ηsγ
2
o + 2γoνoνs + γs

(
2γsηs − ν2

o + ν2
s

)
> 0, (21b)

and


 < 0 or

{

 � 0 and
γs

(
ν2

s − ν2
o

) − 2γoνoνs + 8ηsγ
2
s < 0

(21c)

with 
 = b2
1 − 4b0b2, where b0 = 4G3

s γs(γ 2
s + γ 2

o ), b1 = G2
s

[γs(8γsηs − ν2
o + ν2

s ) − 2γoνoνs]/(τ0ηs), and b2=Gs(4γsηs −
ν2

o + ν2
s )/(τ 2

0 ηs).
It is important to note that if the thermodynamics constraint

(6) holds, all the conditions of Eq. (21) are satisfied and the
system is always stable at long-time, as expected. Constraint
(21b) coincides with the condition for the stability of a general
odd viscoelastic fluid, which we derived in Ref. [3] by con-
sidering the stability of perturbative modes. We also note that
the constraint (21c) depends on the mass density ρ0 (through
τ0), whereas the other constraints Eqs. (21a) and (21b) only
depend on viscoelastic coefficients.

For concreteness, we show in Fig. 3 stability diagrams
of a probe immersed in an odd incompressible viscoelastic
fluid. Figures 3(a), 3(c), and 3(d) display the unstable (red)
regions of the parameter space and the passive (blue) regions,
where the thermodynamics constraint (6) is satisfied. These
two regions are disjoint, as expected from thermodynamics.
Note that the three-dimensional view of the parameter space
(νo, γoηs, γsηs) of Fig. 3(d) shows the symmetry (νo, γo) →
(−νo,−γo) of the system.

As intuition would suggest, the friction γs, which charac-
terizes the elastic stress relaxation, has a stabilizing role, and
increasing it always leads to more stable systems. On the other
hand, the odd coupling νo is destabilizing the system as its
magnitude is increased (provided its sign is kept constant).
The odd elastic relaxation term γo has a more subtle effect
and may have a destabilizing or stabilizing influence [see
Fig. 3(a)].

Figure 3(b) highlights the consequences of the odd active
coefficients on the time-dependent (drag) response M‖(t ) ex-
perienced by the particle along its velocity. In the linearly
stable regions [points A and B in Fig. 3(a)], the drag decays to
0, indicating that the initial perturbation is eventually damped
by viscous friction. On the other hand, the parallel response
corresponding to parameters in the active unstable region
[point C in Fig. 3(a)] increases with time, indicating that the
probe motion is accelerated by the active fluid surrounding it.
This acceleration must eventually be compensated by nonlin-
earities that we have not considered in the present analysis.

Broken Onsager symmetry. We now continue the discussion
in the case of an incompressible fluid with broken Onsager
symmetry, that is, ν′ �= ν. We define ν ′

s,o = ν̃s,o + es,o and
νs,o = ν̃s,o − es,o, such that the Onsager symmetry is recov-
ered for es,o = 0. Breaking Onsager symmetry modifies the
conditions for stability, although these new conditions take a
form similar to those given in Eq. (21). They read

e2
o − e2

s + 4γsηs − ν̃2
o + ν̃2

s > 0, (22a)

2ηsγ
2
o + 2γoν̃oν̃s + γs

(
2γsηs − ν̃2

o + ν̃2
s

) + γ− > 0,

(22b)

whereγ± = γs(e
2
o − e2

s ) ± 2γoeseo, and


<0 or

{

 � 0 and
γs

(
ν̃2

s − ν̃2
o

) − 2γoν̃oν̃s + 8ηsγ
2
s + γ+ < 0,

(22c)

where we have defined 
 = b2
1 − 4b0b2 with b1 = G2

s [γs

(8γsηs − ν̃2
o + ν̃2

s ) − 2γoν̃oν̃s + γ+]/(τ0ηs), b2 = Gs(e2
o −

e2
s + 4γsηs − ν̃2

o + ν̃2
s )/(τ 2

0 ηs). Importantly, note that eo

cannot destabilize the system. This is expected, as this
coefficient enters antisymmetrically in the constitutive
equations, which causes its contribution to the entropy
production to vanish. In fact, taking es = 0 in Eq. (22) shows
that the constraints are more easily satisfied for eo �= 0, and
eo even has a stabilizing effect.

On the other hand, es does add to the dissipation rate,
and therefore a nonvanishing es can drive the system into an
unstable regime, even if the symmetric equivalent of ther-
modynamic constraint 2ηsγs � ν̃2

o is satisfied. If es �= 0 and
γo �= 0, the odd deviation from Onsager symmetry eo can also
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FIG. 3. Stability of a probe in an odd viscoelastic medium. (a,c) Stable (white and blue) and linearly unstable (red) regions in the
parameter space (γoηs, γsηs ) in panel (a) and (νo, γsηs ) in panel (c). The passive (blue) region indicates where the passivity constraint (6)
is satisfied. (b) Drag response ηsM‖ as a function of the dimensionless time t̂ = t/τ0 with τ0 = a2ρ0/ηs for the points A, B,C in the parameter
space indicated in panel (a). (d) Linearly unstable (red) and passive (blue) regions in the three-dimensional parameter space (νo, γoηs, γsηs ).
Importantly, the transformation (νo, γo) → (−νo, −γo) is a symmetry of the system. Parameters used are as follows: for all panels, νs = 1.
(a) νo = 1.5. (b) A, B,C: νo = 1.5, γoηs = −2, Gsτ0/ηs = 0.25, and A: γsηs = 1.3, B: γsηs = 0.75, C: γsηs = 0.2. (c) γoηs = 2.

play a role in destabilizing the system through the term γoeseo

entering Eq. (22). These results show the complex interplay
between oddity and the breaking of Onsager symmetry in
determining the stability of a probe.

IV. DRAG AND LIFT RESPONSE

A. Drag response for an incompressible fluid

In this section, we consider the response along the velocity
direction [drag, M‖(s)] and perpendicular to it [lift, M⊥(s)],
making the decomposition

Mi j (s) = M‖(s)δi j − M⊥(s)εi j . (23)

For simplicity, we enforce Onsager symmetry in this sec-
tion and take ν′ = ν. We first consider the incompressible
limit, so that M inc

⊥ (s) = 0, whereas the drag response coeffi-
cient reads

M inc
‖ (s) = 1

4πAs(s)
K0

(√
sτ0

As(s)/ηs

)
, (24)

with τ0 = ρ0a2/ηs, and K0(z) is the zeroth modified Bessel
function of the second kind. The corresponding drag response

in time domain can be obtained numerically (see Appendix F
for details), and the results are displayed in Fig. 4.

In Figs. 4(a) and 4(b), we first explore the role of the odd
elastic coefficient νo and of the odd elastic strain relaxation
rate γo. For a vanishing odd elastic strain relaxation rate γo

[Fig. 4(a)], the drag response does not display oscillations,
while a nonvanishing γo [Fig. 4(b)] leads to a long-lived
oscillatory behavior, despite strain relaxation due to plasticity.
This is a unique property that can signal odd viscoelasticity in
experiments. Furthermore, we note that the amplitude of these
oscillations is strongly amplified by the odd elasticity coeffi-
cient νo. This finding highlights again the nontrivial interplay
between the different odd coefficients, which was already
observed in Sec. III B for the stability constraints. It shows that
increasing γo and νo eventually induces instabilities. Specifi-
cally, the dotted red line in Fig. 4(a) (corresponding to νo �
γ 2

s + ν2
s ) corresponds to a diverging trajectory. Such a non-

converging drag response should be regularized by nonlinear
corrections.

In Figs. 4(c) and 4(d), we compute the drag response for
a varied γo for νo = 0 and 1, respectively. We find that an
increasing γo leads to an increasing oscillation frequency. In
Fig. 4(d), the choice of νo makes the viscoelastic fluid active,
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FIG. 4. Drag response ηsM‖ of an odd incompressible viscoelastic fluid as a function of the dimensionless time t̂ = t/τ0 with τ0 = a2ρ0/ηs.
(a) In the absence of an odd elastic stress relaxation (γo = 0) and for different values of νo. (b) In the presence of an odd elastic stress relaxation
(γoηs = 8) and for different values of νo. (c) Drag response for a varied odd elastic stress relaxation γo and a vanishing νo. (d) Drag response for
a varied odd elastic stress relaxation γo and νo = −1.2. In all panels, the solid lines indicate passive fluids for which Eq. (6) is satisfied, while
dashed lines are used for active fluids. The red dotted lines are unstable active drag responses for which Eq. (21) is violated. Such responses
diverge at long time, and nonlinear mechanisms should be included to obtain the corresponding large-time behavior. Other parameters are
νs = 1, γsηs = 0.3, Gsτ0/ηs = 0.25.

and it was shown in Sec. III B that this may induce instabilities
for the motion of the probe particle. This is the case for
the dotted red line, which violates the stability constraint of
Eq. (21b).

B. Drag and lift response for a compressible fluid

Compressibility is a necessary condition for observing lift
forces [18,39], a signature of odd fluids. In this section, we
thus discuss how a finite compressibility of the fluid can be
considered within our framework. Although exploring sys-
tematically the role of finite compressibility for the response
of a probe in an odd viscoelastic medium is beyond the scope
of this paper, we illustrate here a few important features of
finite compressibility.

To relax the incompressibility constraint while continuing
analytic computations, we consider a weak oddity approxi-
mation, i.e., we consider ηo, γo, and νo small compared to
their shear and bulk counterparts. We introduce εo, the cor-
responding small parameter (for instance, εo = ηo/ηs). We

discuss here the first nonvanishing correction, although the
series expansion can be continued to higher orders. Starting
from Eq. (15), we obtain the response coefficients that were
defined in Eq. (23):

M‖(s) = M inc
‖ (s) + �(s)K0(

√
τ0s�(s))

4πηs
+ O(ε2

o ),

(25a)

M⊥(s) = τ0sAo(s)/ηs

ψ̂−1 + τ0sAb(s)/ηs

[
2M inc

‖ (s)

−�(s)K0(
√

τ0s�(s))

2πηs

]
+ O(ε2

o ), (25b)

where we have defined the dimensionless compressibility

ψ̂ = ψη2
s /(aρ0)2 and

�(s) = τ0s

ψ̂−1 + τ0s[Ab(s) + As(s)]/ηs
. (25c)
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FIG. 5. Drag and lift responses of an odd compressible viscoelastic fluid induced as a function of the dimensionless time t̂ = t/τ0 with
τ0 = a2ρ0/ηs. (a) Drag response ηsM‖ for different values of the dimensionless inverse compressibility ψ̂ = ψη2

s /(aρ0)2. (b) Lift response
ηsM⊥ for different values of the dimensionless inverse compressibility ψ̂ . Other parameters are νs = νb = 1, γsηs = 1, Gsτ0/ηs = 1, ηb/ηs = 0,
γbηs = 0, Gbτ0/ηs = 0, ηo/ηs = 0.1, γoηs = 0.1, νo = 0.

As expected, the lift response vanishes in the incompress-
ible limit ψ̂ → 0. Note also the absence of odd corrections to
the drag response [Eq. (25a)] at first order.

Figure 5 displays the drag and lift responses for different
values of ψ̂ , illustrating the role of a finite compressibility.
Increasing the compressibility ψ̂ spreads out the response in
time both for the drag and lift coefficients. For small val-
ues of the compressibility, we observe a short-time response,
eventually converging to the incompressible limit [black line,
Fig. 5(a)]. The lift response, which is a hallmark of odd sys-
tems and thus vanishes in the absence of the odd coefficients,
is shown in Fig. 5(b). Note the rapid sign change of the lift co-
efficient, which becomes more pronounced and symmetrical
as the compressibility ψ̂ is decreased, leading eventually to a
vanishing lift response in the incompressible limit ψ̂ → 0.

V. DISCUSSION

In this work, we considered the stability of two-
dimensional odd viscoelastic fluids by looking at the motion
of probe particles that experience an instantaneous push at
t = 0. We considered contributions to the constitutive equa-
tion that are allowed for passive systems (as found in Ref. [3]),
as well as active terms that rely on fuel consumption at
a microscopic level. Such active terms modify the passive
picture by breaking the two hallmarks of passive hydrody-
namics: Onsager-symmetry and positive-definiteness of the
Onsager matrices. To characterize the effect of activity, we
first discussed the stability condition of a probe in a generic,
compressible odd viscoelastic fluid before focusing on the
incompressible limit, where the discussion is simpler while
the essential ingredients are kept. Importantly, although the
lift force vanishes in this limit [17], odd viscoelastic effects
manifest themselves spectacularly as they can destabilize the
probe motion. We find that passive odd viscoelastic fluids,
where viscoelastic coefficients are constrained by the Second
Law of Thermodynamics, are always linearly stable. We find
the converse statement that active odd viscoelastic fluids are
always unstable not to be true. Specifically, we find that there

is an intermediate region where the motion of probe particles
is stable, despite the system being active and constantly con-
suming fuel. In this intermediate regime, there is a nontrivial
interplay between the odd elasticity coefficient νo and odd
plasticity γo, which is graphically displayed in Fig. 3. This
interplay is even more surprising considering that odd plas-
ticity is a nondissipative phenomenon and therefore plays no
role in determining the passivity of an odd viscoelastic fluid
[3]. Similarly, the nondissipative shear elastic coefficient νs is
involved in stability constraints despite being nondissipative.

The stability of viscoelastic models was considered in pre-
vious works by looking at the stability of perturbative modes.
In Ref. [3], a small wave-vector analysis yielded a constraint
identical to Eq. (21b), which is one of the three constraints
obtained in this work for stable probe particle motion that are
given in Eq. (21). In Ref. [25], odd viscoelastic materials were
studied in the context of the formation of spatial-temporal
patterns, whose presence indicates instability. The authors
performed a numerical analysis of the perturbative modes to
determine their stability for a range of wave vectors. The nu-
merical findings of Ref. [25], showing that odd elasticity can
destabilize the viscoelastic material, whereas shear elasticity,
plasticity, and viscosity tend to stabilize the viscoelastic mate-
rial, qualitatively agree with the analytic constraints derived in
the present work. Such a qualitative finding is also consistent
with the analytically derived stability constraint of Eq. (21b)
found in Ref. [3].

In this work, we furthermore considered the effect of
several odd viscoelastic coefficients on probe particle mo-
tion. The obtained results provide a viscoelastic extension of
Ref. [18] for the incompressible case and of Refs. [39,40] for
the compressible case, which considered lift and drag force for
an odd viscous fluid. When generalizing to viscoelastic fluids,
one must consider inhomogeneities in time to see qualitatively
different effects, as at vanishing frequencies only viscous ef-
fects remain. For this reason, we only considered the motion
of a probe particle after a push at t = 0. A computational
advantage of doing so is that there is no problem arising
from the Stokes paradox [51], which for the steady case was

044126-8



PROBE PARTICLES IN ODD ACTIVE VISCOELASTIC … PHYSICAL REVIEW E 109, 044126 (2024)

resolved in Refs. [39,40] by regularizing the integral with mo-
mentum relaxation coming from the three-dimensional bulk.
We first considered the incompressible limit, which is a limit
that is decoupled from passivity constraints and therefore a
useful limit for considering active destabilizing effects. One
key qualitative feature that we find is that the relaxing velocity
becomes oscillatory for a nonzero odd plasticity coefficient γo

and that the amplitude of this oscillation is amplified by the
odd elasticity coefficient νo. This again highlights the nontriv-
ial interplay between these two odd viscoelastic coefficients,
and it is illustrated in Fig. 4. We also discussed the role of
compressibility in the response of the probe. In this case,
we showed that the odd lift force, transverse to the direction
of motion of the probe particle, that exists for viscous odd
fluids, becomes time-dependent in viscoelastic systems. We
discussed this case focusing on a small oddity limit, where
analytical results can be obtained, and the results are displayed
in Fig. 5. In the compressible regime, probes placed in a lin-
early unstable odd viscoelastic fluid are likely to perform limit
cycles in the plane. Exploring these limit cycles, and more
generally the probe motion in the linearly unstable regime, is
an interesting aspect that requires introducing nonlinear terms
whose symmetry and time dependence need to be discussed.
We leave this work for future publications.

Lastly, chiral biological systems such as cell assemblies
or tissues are good candidates for displaying simultaneously
odd, active, and viscoelastic behaviors. In this context, a
layer of such cells is likely to exchange momentum with the
three-dimensional bulk (for instance, an extracellular matrix
in the case of an epithelial tissue, or seawater in the case
of starfish oocytes [11]). In addition, cell number is usually
not conserved in such systems since cell divisions, deaths,
or extrusions can occur. Although we have not considered
finite momentum or density relaxation processes in this paper,
taking them into account would be straightforward [52,53] in
our formalism. The effects of such terms have been discussed
for purely viscous odd fluids in Ref. [39].
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APPENDIX A: CONSTITUTIVE EQUATIONS
FOR ACTIVE ODD MATERIALS

In this Appendix, we will derive the most general consti-
tutive equations for the conserved currents by constraining
entries using the Onsager relations and the Second Law of
Thermodynamics. In Appendix A 1, we first consider the pas-
sive case, following to a large extent the steps performed in

Ref. [45]. This analysis will yield a result that coincides with
Ref. [3], where a general model for passive odd viscoelas-
ticity was constructed. Then we consider the active case in
Appendix A 2. Here, as in Ref. [46], we add fuel consumption,
which allows for a much broader class of nonequilibrium
corrections, for which we consider the effect of some of them
on the motion of beads in the main text.

1. Passive chiral viscoelastic fluid

To hydrodynamically describe a viscoelastic fluid, we first
formulate the conservation laws in the absence of external
forces and torques. First, there is conservation of mass density
ρ and momentum gi,

∂tρ + ∂i(ρvi ) = 0, (A1a)

∂t gi − ∂ jσ
tot
i j = 0, (A1b)

where σ tot
i j is the total stress and vi is the fluid velocity. Mo-

mentum is related to fluid velocity as gi = ρvi. In addition, we
have conservation of angular momentum, given by

∂t li j + ∂kMi jk = −2σ tot
[i j], (A1c)

where li j is the density of intrinsic angular momentum, Mi jk is
the angular momentum flux and where σ tot

[i j] = (σ tot
i j − σ tot

ji )/2
denotes the antisymmetric part of the total stress. Another
property that is important for describing the state of viscoelas-
tic fluids is the tensor ui j . In the elastic limit, ui j is the elastic
strain, however for general viscoelastic fluids ui j can undergo
relaxation through plastic deformations [54,55]. To study the
evolution of ui j and the behavior the viscoelastic fluid in
general, we start by formulating a local free energy [45,46]:

F =
∫ (

1

2
ρv2 + f (ui j )

)
dV, (A2)

where f (ui j ) is the local free-energy density, which depends
on ui j . The tensor ui j is conjugate to the local elastic stress
σ el

i j , such that σ el
i j = ∂ f /∂ui j . For an isotropic solid, the local

free energy density at leading order in strain is given by

f (ui j ) = f0 + Gs(ũi j )
2 + 1

2 Gb(u j j )
2. (A3)

To derive the constitutive equations for the viscoelastic fluid
using the standard hydrodynamic approach, we decompose
our stress into

σ tot
i j = −ρviv j − Pδi j + σ s

i j + σ a
i j, (A4)

where σ s
i j is the deviatoric stress, which is symmetric, and σ a

i j
is the antisymmetric contribution to the stress. The pressure P
is obtained with the Euler relation

P = − f + μn, (A5)

with μ being the chemical potential, and where the density n
is given by n = ρ/m. If one considers the change of time of F ,
one finds upon plugging in the conservation laws of Eq. (A1)
that the entropy production rate � is given by [45,46]

T � = σ s
i jvi j − Dui j

Dt
σ el

i j + 1

2
∂kωi jMi jk, (A6)

where we introduced the rotation ωi j = 1
2 (∂iv j − ∂ jvi ) as well

as the corotational derivative, which for a general two-tensor
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ai j is given by

Dai j

Dt
= ∂t ai j + vk∂kai j + ωikak j + ω jkaik . (A7)

The presence of the corotational derivative in Eq. (A6) fol-
lows from the requirement that the free energy is invariant
under rotations [45]. To have a corotational derivative on the
strain field requires the antisymmetric stress to take the form
σ a

i j = uikσ
el
k j − u jkσ

el
ki . Because of the conservation of angular

momentum given by Eq. (A1c), there is no contribution com-
ing from the antisymmetric stress in the entropy production
rate of Eq. (A6) [56]. Instead, there is only a contribution from
the deviatoric angular momentum flux Mi jk , which will give
contributions to the equations of motion that are two orders
higher in gradients, and these contributions will therefore be
omitted. Note that because odd viscoelastic fluids are often
introduced by chiral agents that draw arbitrary amounts of
angular momentum from the environment, the conservation
of angular momentum tends not to hold. In the absence of
angular momentum conservation, there are ways in which
the antisymmetric stress can get hydrodynamic corrections.
However, we will omit these antisymmetric contributions for
simplicity by upholding angular momentum conservation.
Having the entropy production rate of Eq. (A6) at our disposal,
we are now ready to construct the Onsager matrix, which
contains the most general entries in the deviatoric currents.
An important difference compared to the isotropic achiral
viscoelastic fluids in two dimensions is that, in addition to the
identity, the fully antisymmetric two-dimensional Levi-Civita
tensor εi j can be used to construct entries in the constitutive
equations. As we will discuss below, these tensors can feature
components that are odd under the exchange of indices. This
can give rise, for example, to odd viscosity [6,57–59]. Such
terms signal parity-breaking, and for passive two-dimensional
systems one often finds that this breaking of parity is ac-
companied by a breaking of time-reversal symmetry, as is
the case, for example, for parity-breaking induced by a back-
ground magnetic field. We therefore uphold symmetry under
the simultaneous transformation of parity and time-reversal
when deriving the passive constitutive equations, which mod-
ify the Onsager relations. The details of this are provided in
Appendix C. From the expression of entropy production (A6)
and the Onsager relations, we obtain the following constitutive
relations:

σ s
i j = 2ηp

s ṽi j + η
p
bvkkδi j + 2ηp

ov
o
i j + νp

s σ el
i j

+1

2
ν

p
bσ el

kkδi j + νp
o (σ el )o

i j, (A8a)

Dui j

Dt
= −γ p

s σ̃ el
i j − 1

2
γ

p
b σ el

kkδi j − γ p
o (σ el )o

i j + νp
s vi j

+1

2
νp

s vkkδi j + νp
ovo

i j . (A8b)

What we see in Eq. (A8) are the shear, bulk, and odd viscosity
given by the η-terms, as well as γ -terms representing shear
and bulk plasticity, as well as a coefficient that could be
called “odd plasticity.” This odd plasticity was first considered
in Ref. [60]. Then, there are ν-terms that are nonequilib-
rium corrections representing shear, bulk, and odd elasticity,
the latter of which was first considered as an active term

in Ref. [23]. Using the compact notation described in Ap-
pendix B, Eq. (A8) can be rewritten as

σ s = νp : σ el + 2ηp : v, (A9a)

Du

Dt
= −γp : σ el + νp : v. (A9b)

To see the dissipative properties of the entries in the con-
stitutive equations of Eq. (A9), we plug Eq. (A8) back into
Eq. (A6), which yields

T � = Tr
[
2ηp

s ṽ · ṽ + 2νp
o (σ̃ el · ε · ṽ)

+ γ p
s σ̃ el · σ̃ el

] + 2η
p
bTr[v]2 + γ

p
b Tr[v]2. (A10)

Requiring the first term on the right-hand side of Eq. (A10) to
be non-negative is equivalent to requiring that the matrix(

2η
p
s1 −ν

p
oε

ν
p
oε γ

p
s 1

)
(A11)

is semidefinite-positive, which is satisfied if all its eigenvalues
have a non-negative real part. As was found in Ref. [3], this
condition is guaranteed if, in addition to η

p
s , γ

p
s , η

p
b, γ

p
b � 0,

we have

2ηp
s γ

p
s �

(
νp

o

)2
, (A12)

which is the thermodynamic constraint given in Eq. (4).

2. Active chiral viscoelastic fluid

The passive model we have introduced above can be gen-
eralized by considering activity induced by microscopic fuel
consumption of microscopic agents [46]. The rate of fuel
consumption can be represented by 
μ, which is the chemical
potential difference of a chemical reaction, multiplied by a
scalar reaction rate r. Because of this fuel consumption, the
entropy production rate of Eq. (A6) is generalized to

T � = σ s
i jvi j − Dui j

Dt
σ el

i j + 1

2
∂kωi jMi jk + r
μ. (A13)

This new contribution opens up a wide range of new possible
entries in the constitutive equations, which are given by

σ s = νp : σ el + 2ηp : v + 
μ(ζ(1) : σ el + 2ζ(2) : v),

(A14a)

Du

Dt
= −γp : σ el + νp : v + 
μ(−ζ(3) : σ el + ζ(4) : v).

(A14b)

The active terms (∝ 
μ) can be absorbed into a redefini-
tion of the parameters so that constitutive equations read

σ s = ν : σ el + 2η : v, (A15a)

Du

Dt
= −γ : σ el + ν′ : v, (A15b)

which is Eq. (5) in the main text. The new parameters are
related to the passive ones of Eq. (A14) by η = ηp + 
μζ(2),
γ = γp + 
μζ(3), ν = νp + 
μζ(1), and ν′ = νp + 
μζ(4).
Note that 
μ, as can be seen in Eq. (A13), is a thermody-
namic force [46] corresponding to the flux r. Because 
μ is
a thermodynamic force, it should be a small correction with
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respect to the local equilibrium. This means that the 
μσ el-
and 
μv-terms are second order, and one would therefore
naively think that these terms should be neglected. However,
these second-order terms play an important qualitative role as
the effective coefficients appearing in η, γ, ν, ν′ are not bound
by the passivity constraint (A12). In particular, this allows for
the presence of active odd elasticity.

To make sure that the second law constraint � � 0 in
Eq. (A13) as well as the Onsager relations described in Ap-
pendix C are satisfied, we require the corresponding reaction
rate to be

r = �
μ + Tr[−σ el : ζ(1) : v + 2v : ζ(2) : v

+ σ el : ζ(3) : σ el + v : ζ(4) : σ el]. (A16)

APPENDIX B: COMPACT TENSOR NOTATION AND ODD
ISOTROPIC RANK-4 TENSOR ALGEBRA

In this Appendix, we describe the notation used for de-
scribing tensors and their contractions. First, we describe
vectors and two-tensors with a single and a double underline,
i.e.,

Vi → V , Ti j → T . (B1)

We define the components of an odd isotropic rank-4 tensor B
in the following way:

Bi jkl = Bs

2
(δikδ jl + δilδ jk − δi jδkl ) + Bb

2
δi jδkl

+ Bo

4
(δikε jl + δilε jk + δ jkεil + δ jlεik ). (B2)

These tensors are symmetric with respect to their first two
and last two indices, such that Bi jkl = Bjikl and Bi jkl = Bi jlk .
The contraction of an odd isotropic rank-4 tensor B with an
arbitrary rank-2 tensor b reads

(B : b)i j = Bi jkl bkl = Bsb̃i j + Bb

2
Tr(b)δi j + Bob̃o

i j, (B3)

where

Tr(b) = b j j, b̃i j = 1
2 (bi j + b ji ) − 1

2 bkkδi j, b̃o
i j = εik b̃k j .

(B4)

One important relation that is used in Appendix A is

a : A : a = As(ãi j )
2 + 1

2 Ab(Tr(a))2, (B5)

where we see that the odd contribution drops out due to its
antisymmetric nature. Consistently with the definition (B3),
we define the contraction C = AB of two tensors A and B in
terms of their components as

Ci jkl = Ai jmnBmnkl . (B6)

Odd isotropic rank-4 tensors form a commutative group under
multiplication since

Ci jkl = Ai jmnBmnkl = Cs

2
(δikδ jl + δilδ jk − δi jδkl ) + Cb

2
δi jδkl

+ Co

4
(δikε jl + δilε jk + δ jkεil + δ jlεik ), (B7)

where

Cs = AsBs − AoBo, Cb = AbBb, Co = AoBs + AsBo,

(B8)

where we have used the relation εi jεkl = δikδ jl − δilδ jk . The
identity tensor I is defined componentwise as

Ii jkl = 1
2 (δikδ jl + δilδ jk ), (B9)

and the inverse N = M−1 of M satisfies M−1M = MM−1 = I
and has the following elements:

Ns = Ms

M2
s + M2

o

, Nb = 1

Mb
, No = − Mo

M2
s + M2

o

. (B10)

APPENDIX C: ONSAGER RELATIONS WITH ODD
ISOTROPIC RANK-4 TENSORS

In this Appendix, we derive Onsager relations in the case
in which the state variables �α of the system are rank-2
symmetric tensors. We define their conjugate forces as f α =
−δF/δ�α , where F[�] is the free energy of the system. The
time derivative of the free energy can therefore be written as

Ḟ = −
∑

α

�̇α
i j f α

i j , (C1)

where the summation over repeated Latin indices is implicit,
while we write explicitly the summation over Greek indices.
Linear relations between thermodynamics fluxes and forces
read

�̇
α =

∑
β

Lαβ : f β, (C2)

where each Lαβ is an odd isotropic rank-4 tensor. Writing
explicitly the components, we have

�̇α
i j =

∑
β

Lαβ

i jkl f β

kl . (C3)

We deduce

Ḟ = −
∑
αβ

(Lαβ : f β )i j f α
i j = −

∑
αβ

Lαβ

i jkl f α
i j f β

kl , (C4)

from which we deduce that the odd part of the diagonal ele-
ments of L (i.e., the coefficients Lαα

o ) do not contribute to the
rate of change of the free energy as a consequence of Eq. (B5).
We now derive the symmetries of the Onsager matrix Lαβ

under time reversal. For this purpose, we first introduce the
partition function

Z =
∫

D� e−F [�]/kBT , (C5)
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which can be used to compute correlation functions. We have

〈�α f β〉 = 1

Z

∫
D��α f βe−F [�]/kBT ,

= − 1

Z

∫
D��α δF

δ�β
e−F [�]/kBT ,

= kBT

Z

∫
D� �α δ

δ�β
e−F [�]/kBT ,

= −kBT

Z

∫
D�

δ�α

δ�β
e−F [�]/kBT ,

= −kBT δαβI. (C6)

Note that the same procedure can be used to obtain relations
for higher-order correlation functions. Considering for sim-
plicity scalar quantities, we have the generic expression

〈φα1 · · · φαN f β〉 = − kBT (δα1β〈φα2 · · · φαN 〉
+ δα2β〈φα1φα3 · · · φαN 〉 + · · · ). (C7)

The last equality of Eq. (C6) is best derived using indices

δ�α
i j

δ�
β

kl

= 1

2
(δikδ jl + δilδ jk )δαβ = Ii jklδ

αβ, (C8)

where we have used the fact that the �α are symmetric ten-
sors. The second to last equality in Eq. (C6) has been obtained
using an integration by parts. The boundary terms vanish with
the assumption that F diverges at infinity. Using Eqs. (C3) and
(C6), we can now compute〈

�α
i j�̇

β

kl

〉 = 〈
�α

i jL
βγ

klmn f γ
mn

〉
,

= Lβγ

klmn

〈
�α

i j f γ
mn

〉
,

= −kBTLβα

kli j . (C9)

The same correlation function can also be computed using
time reversal. We have

〈�α�̇
β〉 = lim


→0

1


t
(〈�α (t )�β (t + 
t )〉 − 〈�α (t )�β (t )〉),

= lim

t→0

1


t
(〈�α (t − 
t )�β (t )〉 − 〈�α (t )�β (t )〉),

= lim

t→0

εαεβ


t
(〈�α (−t + 
t )�β (−t )〉

− 〈�α (−t )�β (−t )〉),

= lim

t→0

εαεβ


t
(〈�α (t + 
t )�β (t )〉 − 〈�α (t )�β (t )〉),

= εαεβ〈�̇α
�β〉, (C10)

where εα is the signature of �α under time reversal, and the
overline · · · indicates that the sign of some parameters (for
instance magnetic field) has to be changed. We thus deduce
the Onsager matrix symmetry:

Lαβ

i jkl = εαεβLβα

kli j . (C11)

It yields in particular

Lαα
i jkl = Lαα

kli j, (C12)

which means that an equilibrium odd viscosity needs to
change sign under time reversal to be nonvanishing. This is
consistent, for instance, with odd viscosity [6,57–59], which
is proportional to the magnetic field and therefore changes
sign upon time reversal. Assuming a sign change upon time
reversal for all odd coefficients thus leads to the following
structure for the Onsager matrix:

Lαβ =
(

ηp −νp

νp γp

)αβ

, (C13)

where ηp, νp, and γp are isotropic rank-4 tensors that include
odd and even parts. This yields Eq. (A9).

APPENDIX D: SHELL LOCALIZATION

In this Appendix, we explain how shell localization is used
to obtain the response matrix of Eq. (16). For this, we first
invert Eq. (14) as

vi(k, s) = G−1
i j (k, s) f ext

j (k, s). (D1)

Equation (D1) gives the velocity induced by a force for a given
Fourier wave vector and Laplace frequency. We then consider
the force applied on a probe particle, which is a rigid disk of
radius a located at the origin. Due to the rotational symmetry
of the disk, we can decompose the force density as

f ext
j (s, k) = L(k)Fj (s). (D2)

The shell localization method amounts to assuming that the
force density is uniformly localized on the surface of the probe
particle [49,61,62], i.e.,

L(x) = 1

2πa
δ(|x| − a). (D3)

The assumption of a uniform distribution in real space has
been found to give consistent results for systems where no-slip
boundary conditions apply [39,49,50]. Fourier transforming
Eq. (D3) yields

L(k) = J0(ak), (D4)

with J0(z) the zeroth Bessel function of the first kind. To
obtain the bead velocity, we must inverse Fourier transform
Eq. (D1) to obtain the fluid velocity in real space, which is
coupled to the probe particle velocity through no-slip bound-
ary conditions. The most accurate way to do this would be to
relate the probe particle velocity Ui(s) to vi(|x| = a, s), which
can be done averaging over the boundary line between the
fluid and the probe particle [50]. We instead consider the fluid
velocity localized at |x| = 0, i.e., we relate

Ui(s) = vi(|x| = 0, s), (D5)

as has also been done in Refs. [39,49,61]. As shown in
Ref. [50], averaging over velocities at |x| = a would yield an
additional factor J0(ak) in the integrand of Eq. (16). However,
this modification only leads to minor quantitative effects, and
thus we ignore it for mathematical simplicity.
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APPENDIX E: COMPUTING THE PROBE PARTICLE
STABILITY FOR ACTIVE ODD FLUIDS

1. General case

In this Appendix, we detail the stability analysis of a probe
particle in an active odd viscoelastic fluid, as discussed in
Sec. III. Such stability is determined by the long-term velocity
of the probe particle. This velocity follows from Eq. (12),
which can be rewritten as

Ui(t ) = 1

2iπ

∫ �+i∞

�−i∞
ds est

∫
d2k

(2π )2
Mi j (k, s)L(k)Fj (s),

(E1)

where � is a real number so that the contour path of inte-
gration is in the region of convergence of the integrand. As
discussed in the main text, we consider a force perturbation
along the eigendirections of Mi j , and furthermore we con-
sider an instantaneous perturbation applied at t = 0, such that
Fj (t ) ∝ δ(t ), or Fj (s) ∝ 1 in Laplace space. The velocity of
the probe after this initial perturbation is thus given by

Ui(t ) = 1

2π i

∫ �+i∞

�−i∞
ds est

∫
d2k

(2π )2
mi(k, s)L(k), (E2)

where mi(k, s) depends on the eigenvalues of Mi j and on
the form of the initial perturbation. We will not focus on its
precise expression in the following discussion, but the crucial
point is that mi(k, s) is a rational fraction in s. This implies
that the inverse Laplace transform can be computed as

Ui(t ) =
∑

�

∫
d2k

(2π )2
mi,�(k)L(k) es∗

� (k)t , (E3)

where the s∗
� (k) are the poles in s of the rational fraction mi

and where the mi,�(k) are the residues of mi at s = s∗
� (k). As a

consequence of this simple form, a sufficient condition for the
long-time stability of the probe is directly given by the sign of
the real part of the poles of mi:

Re(s∗
� (k)) � 0 ∀�, ∀k, (E4)

which is the condition given in the main text.

2. Incompressible limit

To continue our analysis while keeping the technicalities to
a minimum, we now restrict ourselves to the incompressible
case. In this simpler case, Mi j is proportional to the identity
tensor, such that the probe velocity can be written as

Ui(t ) = 1

2iπ

∫ �+i∞

�−i∞
ds est

∫ ∞

0

dk

2π
r(k, s)Fi(s), (E5)

where we have defined

r(k, s) = 1

4πηs

akJ0(ak)

τ0s + (ak)2As(s)/ηs
, (E6)

with τ0 = ρ0a2/ηs, and we only consider instantaneous per-
turbations [Fi(s) constant]. As discussed in the previous
section, the long-time stability is then given by the poles
in s of r. They correspond to the roots of the third-order

polynomial P(s) = s3 + a2s2 + a1s + a0 with

a2 = (ak)2/τ0 + 4γsGs,

a1 = Gs

[
4Gs

(
γ 2

o + γ 2
s

) + (ak)2

τ0ηs

(
4γsηs − ν2

o + ν2
s

)]
,

a0 = 2G2
s (ak)2

τ0ηs

[
2ηsγ

2
o + 2γoνoνs + γs

(
2γsηs − ν2

o + ν2
s

)]
,

(E7)

where we have considered the case ν ′
s,o = νs,o. The roots s∗

� (k)
of P(s) all have negative real parts iff a0,1,2 > 0 and a2a1 −
a0 > 0 according to the Routh-Hurwitz stability criterion. We
note that a2 is always positive. The conditions a0,1 > 0 are
equivalent to

4γsηs − ν2
o + ν2

s > 0, (E8a)

2ηsγ
2
o + 2γoνoνs + γs

(
2γsηs − ν2

o + ν2
s

)
> 0. (E8b)

The condition a2a1 − a0 > 0 takes the form of a second-order
polynomial Q(X ) = b2X 2 + b1X + b0 with X = (ak)2

and b0 = 8G3
s γs(γ 2

s + γ 2
o ), b1 = G2

s [γs(8γsηs − ν2
o + ν2

s ) −
2γoνoνs]/(τ0ηs), b2 = Gs(4γsηs − ν2

o + ν2
s )/(2τ 2

0 ηs). With

 = b2

1 − 4b0b2 the discriminant of Q, the condition
a2a1 − a0 > 0 thus translates to


 < 0 or

{

 � 0 and

γs
(
ν2

s − ν2
o

) − 2γoνoνs + 8ηsγ
2
s < 0.

(E8c)

A similar analysis can be conducted for ν ′
s,o �= νs,o.

APPENDIX F: INVERSE LAPLACE TRANSFORM
IN THE INCOMPRESSIBLE CASE

In this Appendix, we compute explicitly the velocity of a
probe immersed in an odd incompressible viscoelastic fluid.
In the incompressible limit, the probe velocity Ui(t ) is directly
obtained as the inverse Laplace transform of the complex
velocity Ui(s):

Ui(t ) = 1

2iπ

∫ �+i∞

�−i∞
ds estUi(s), (F1a)

where Ui(s) was obtained in Eq. (24), and we rewrite it here
for convenience:

Ui(s) =
K0

(√ sτ0
As (s)/ηs

)
4πAs(s)

Fi(s). (F1b)

As we will see in the following, the computation of the
inverse Laplace transform requires performing contour in-
tegration in the complex plane, which has to be carefully
designed due to the presence of the square root in Eq. (F1b).
Therefore, in order to simplify the following discussion, we
consider the case in which the coefficient γo vanishes, al-
though a similar result can be obtained in the general case.
For γo = 0, the complex viscosity As reads

As(s) = ηs
s − s1

s − s2
, (F2)

where s1 = −Gs(2ηsγs − ν2
o + ν2

s )/ηs and s2 = −2γsGs.
Note that s2 < 0 while s1 can be either sign, and it is positive
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FIG. 6. Contour integration in the complex plane used to com-
pute the inverse Laplace transform (F3). The dashed blue lines along
the real axis indicate branch cuts of the integrand. To compute the
integrals Gi along the contours Ci, the radius of the large circle R and
the width 2ε between the segments above and below the real axis are
sent to ∞ and 0, respectively.

in the unstable regime according to Eq. (21b). In the fol-
lowing, we consider the unstable case and have s2 < 0 < s1.
We also introduce 
s = s2 − s1 < 0 for convenience. The
computation in the stable case (s1 < 0) follows the same steps.

Finally, we consider the velocity after an instantaneous
force is applied. We thus take Fj (t ) ∝ δ(t ) [or Fj (s) ∝ 1 in
Laplace space], and the drag response defined in Eq. (23)
reads

ηsM‖(t ) = 1

4π

∫ �+i∞

�−i∞

ds

2iπ
g(s)est ,

g(s) = s − s2

s − s1
K0

⎛
⎝

√
s(s − s2)

s − s1

⎞
⎠. (F3)

This inverse Laplace transform can be computed using
residues. We first note that the function g(s) has branch cuts
for Re[s(s − s2)/(s − s1)] < 0, that is, for Re(s) < s2 and
0 < Re(s) < s1, and is analytic otherwise. We thus define a
closed integration contour (see Fig. 6) that avoids the branch
cuts such that

∑
i Gi = 0, where Gi = ∫

Ci
ds g(s)est/(2iπ ). In

the following, we detail the computation of Gi>1.

Contours C2 and C14. We set s = Reiθ with θ ∈ [π/2, π ]
such that

G2 = lim
R→∞

1

2iπ

∫ π

π/2
dθ iReiθ Reiθ − s2

Reiθ − s1

× K0

⎛
⎝√

Reiθ/2

√
Reiθ − s2

Reiθ − s1

⎞
⎠eReiθ t , (F4)

which vanishes in the limit R → ∞ because of the last expo-
nential factor in the above equation with real part Rt cos θ � 0
(for t > 0 and θ ∈ [π/2, π ]). Similarly, we find G14 = 0.

Contours C3 and C13. For C3, we set s = s2 + eiπu with u ∈
[0,∞[, from which we obtain

G3 = 1

2iπ

∫ 0

∞
du eiπ eiπu

eiπu + s2 − s1

× K0

⎛
⎝

√
(eiπu + s2)eiπu

eiπu + s2 − s1

⎞
⎠e(s2+eiπ u)t ,

= 1

2iπ

∫ ∞

0
du

u

u − 
s
K0

(
i
√

u

√
(u − s2)

u − 
s

)
es2t e−ut .

(F5)

Similarly, setting s = s2 + e−iπ u along C13 yields

G13 = − 1

2iπ

∫ ∞

0
du

u

u − 
s
K0

(
−i

√
u

√
(u − s2)

u − 
s

)
es2t e−ut .

(F6)

Contours C4 and C12. For C4, we set s = s2 + εeiφ with φ ∈
[0, π ], from which we obtain

G4 = lim
ε→0

1

2iπ

∫ 0

π

dφ εieiφ εeiφ

εeiφ + 
s

× K0

⎛
⎝√

εeiφ/2

√
eiπε + s2

eiπε − s1

⎞
⎠e(s2+εeiφ )t ,

= lim
ε→0

1

2iπ

∫ 0

π

dφ
ε2


s
K0

(√
εeiφ/2

√
s2

−s1

)
es2t , (F7)

which vanishes in the limit ε → 0 since K0(x) ∼
x→0

− log x.

Similar steps yield G12 = 0.
Contours C5 and C11. The contributions stemming from

C4 and C11 cancel each other, since they correspond to an
integration in both directions of a holomorphic function along
these contours.

Contours C6 and C10. For C6, we set s = εeiφ with φ ∈
[0, π ], from which a computation similar of that of G4 yields

G5 = lim
ε→0

1

2iπ

∫ 0

π

dφ
s2

s1
εK0

(√
εeiφ/2

√
s2

s1

)
, (F8)

which vanishes in the limit ε → 0. Similar steps yield
G10 = 0.
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Contours C7 and C9. For C7, we set s = s1 + s1ueiπ with
v ∈ [0, 1], from which we obtain

G7 = 1

2iπ

∫ 1

0
dv


s + s1v

v

× K0

(
e−iπ/2

√
(v − 1)(s1v + 
s)

v

)
es1(1−v)t . (F9)

Similarly, setting s = s2 + e−iπ u along C13 yields

G9 = − 1

2iπ

∫ 1

0
dv


s + s1v

v

× K0

(
e+iπ/2

√
(v − 1)(s1v + 
s)

v

)
es1(1−v)t . (F10)

Contour C8. We set s = s1 + εeiφ with φ ∈ [−π, π ], from
which we obtain

G8 = lim
ε→0

1

2iπ

∫ −π

π

dφ (−
s)K0

(
1√
ε

eiφ/2
√

s1(−
s)

)
es1t ,

(F11)

which vanishes in the limit ε → 0 since K0(x) ∼
x→∞

−√
π/(2x) e−x.

Since ηsM‖(t ) = G1/(4π ) and G1 = −∑
i>1 Gi = −(G3

+ G13 + G7 + G9), we finally obtain

ηsM‖(t ) = 1

8π

[∫ ∞

0
du a(u, t ) +

∫ 1

0
dv b(v, t )

]
(F12a)

with

a(u, t ) = u

u − 
s
J0

(√
u(u − s2)

u − 
s

)
es2t−ut , (F12b)

b(v, t ) = 
s + s1v

−v
J0

(√
(v − 1)(s1v + 
s)

v

)
es1(1−v)t ,

(F12c)

and where we have used the identities K0(ix) − K0(−ix) =
−iπJ0(x) for x > 0. Importantly, we verify that in the long-
time limit, the behavior of M‖(t ) ∼

t→∞ es1t is set by the real part

of s1 [since (s2 − u)t is always negative], and thus it diverges,
as expected for our choice s1 > 0.
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