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Akey event at the onset of development is the activation of a contractile actomyosin
cortex during the oocyte-to-embryo transition' . Here we report on the discovery
that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by
the emergence of thousands of short-lived protein condensates rich in F-actin,

N-WASP and the ARP2/3 complex*® that form an active micro-emulsion. A phase
portrait analysis of the dynamics of individual cortical condensates reveals that
condensatesinitially grow and then transition to disassembly before dissolving
completely. We find that, in contrast to condensate growth through diffusion’, the
growth dynamics of cortical condensates are chemically driven. Notably, the
associated chemical reactions obey mass action kinetics that govern both
composition and size. We suggest that the resultant condensate dynamic instability™
suppresses coarsening of the active micro-emulsion™, ensures reaction kinetics that
areindependent of condensate size and prevents runaway F-actin nucleation during
the formation of the first cortical actin meshwork.

Morphogenesis involves forces that are generated within the acto-
myosin cortical layer of cells'. Improper cortical organization leads
toanimpairment of key cellular and developmental processes fromas
early as meiosis in oocytes to every subsequent cell division'>. During
meiotic maturation of oocytes, the actomyosin cortex transitions from
inactive and non-contractile, to active and tension generating®>. This
transition can generate a spectrum of actomyosin cortical structures
and dynamics, including an actin cap in the mouse oocyte', actin spikes
in starfish oocytes and waves of Rho activation and F-actin polym-
erization in Xenopus®. Organizing the first active actomyosin cortex
requires the recruitment and assembly of various cortical components
aswell as the polymerization of actin filaments*. These processes have
to be coordinated across the entire cell surface in order to generate a
uniform actomyosin cortical layer. Here we ask how the formation of
an active and tension-generating actomyosin cortex during meiotic
maturation in oocytes is orchestrated.

Actomyosin cortex activation

The hermaphrodite nematode Caenorhabditis elegansis a prime sys-
tem for investigating actomyosin cortex formation during oocyte
maturation' 8. In C. elegans, the onset of meiotic divisions and oocyte
maturation coincides with ovulation and fertilization'*’s, Oocytes are
fertilized inside the hermaphrodite mother as they pass through the
sperm-containing organ—the spermatheca'. To understand how the
formation of the first actomyosin cortex during oocyte maturationis
orchestrated, we visualized F-actin in C. elegans oocytes containing
Lifeact::mKate2. We observed that, just before fertilization inside
the mother, the oocyte cortical layer appears undeveloped with only

sparse amounts of filamentous actin present (Fig. 1a, left). By contrast,
shortly after fertilization a highly dynamic and dense actomyosin
cortical layer is present below the plasma membrane (Fig. 1a, right
and Supplementary Video 1). Importantly, we find that actomyosin
cortex activationinthe oocyte occurs through anintermediate stage
that lasts approximately 10 min, results in a dynamic and contractile
actomyosin cortical layer, and ends with the extrusion of the first
polar body” (Supplementary Video 1). Strikingly, this intermediate
stage is characterized by the transient appearance of thousands of
F-actin-rich condensates at the cortical layer (Fig.1a). Here we use the
term condensate to refer to a dense assembly of specific molecular
components maintained by collective molecular interactions. F-actin
andits nucleators have previously been shown to form biomolecular
condensates and evidence for liquid-like properties has been pro-
vided> 8. The F-actin-rich condensates we observe are highly dynamic
and inherently unstable. They appear stochastically and each disap-
pear after approximately 10 s.

We next set out to investigate the nature of these transient
F-actin-rich condensates. To better observe their dynamics, we
took advantage of the fact that oocytes isolated from the mother
can maturein the absence of fertilization®. This allowed us to develop
a total internal reflection fluorescence (TIRF) assay® utilized under
highly inclined and laminated optical sheet (HILO) conditions for
imaging cellular structures near the cell membrane (Fig. 1b). This
enabled a quantitative study of actomyosin cortex formation iniso-
lated oocytes at high spatial and temporal resolution (Supplementary
Video 2). F-actin polymerization is organized by nucleation path-
way members such as N-WASP and the ARP2/3 complex, as well as
the elongator Formin?2. We first investigated the presence of these
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Fig.1|Actomyosin cortex formationatthe oocyte-to-embryo transition
proceeds through dynamicF-actin/WSP-1cortical condensates. a, Inutero
microscopy images of the oocyte-to-embryonic transitionin C. elegans at
differenttimes with respect to fertilization (min:s). F-actin (Lifeact::mKate)
inmagenta; scalebars,10 um (a,b,c,e). b, TIRF images of anisolated oocyte
undergoing maturation. In both examples (aandb), a contractile cortex
forms (rightmostimage) following astage characterized by theemergence

of short-lived dynamic condensatesrichin F-actin (two middleimages).

¢, TIRFimages of cortical condensates. Endogenous WSP-1::GFPingreen

(left) and endogenous ARX-2::mCherry in blue (right). d, Compositional
dynamics of condensates located within the respective white boxesin cover
time, revealing thatadjacent condensates candifferin theirinstantaneous
dynamics. e, Condensate dynamics as revealed by kymographs obtained from
thewhite dottedlinesin c.f, Normalized probability (Norm. prob.) of condensate

componentsin cortical condensates. We used three strains labelling
F-actin (by expressing Lifeact::mKate2) together with either endog-
enously labelled N-WASP (WSP-1::GFP), capping protein (CAP-1::GFP)
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v, A+vyW.j, Instantaneous concentrations of F-actin and WSP-1within
condensates from an ensemble 0f 36,930 condensates from 9 oocytes. Here
68% and 25% of instantaneous condensate concentrations fall within the outer
andinner dark blue contour line, respectively. The light blue dot indicates the
peak of preferentially maintained concentration pair of WSP-1and F-actinin
control oocytes. k, Normalized probability density functions of WSP-1::GFP
(greenlines) and Lifeact::mKate (magentalines); theintegrated condensate
intensities are similar at 0,4 and 8 min after the onset of oocyte maturation.

or Formin (CYK-1::GFP)?. In addition, we used a strain that endog-
enously labels both the ARP2/3 complex (ARX-2::mCherry) and
N-WASP (WSP-1::GFP). As well as F-actin, we identified WSP-1, the
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Fig.2|Mass flux phase portrait analysis of cortical condensate growth
laws. a, Time traces of WSP-1::GFP (green line) and Lifeact::mKate (magenta
line) total condensate intensities from arepresentative cortical condensate.
b, Timetraces of the measured (solid grey line) and determined (dashed grey
line) volume using the volume dependence on molecular contentu, A+ v, W,
and stoichiometryﬁ (yellowline) for the cortical condensateina. The blue
shaded regionindicates the range of stoichiometry for which the volume
dependenceaccounts for measured volumes (Extended Data Fig. 2). ¢, Mass
flux phase portraitmeasured from 299,165 time points 0f 36,930 condensates
from9 oocytes (experiment, orange and grey arrows), and calculated from
empirically determined growth laws (theory, yellow, greenand blue arrows);
see Extended DataFig.10 for separate representations. The colour scale
denotes time rate change vector magnitudes. Thick linesindicate WSP-1
(green) and F-actin (magenta) nullclines from experiment; thin lines indicate

ARP2/3 complex and the capping protein CAP-124 (Fig. 1c, Extended
DataFig.1and Supplementary Videos 3 and 4) as components of corti-
cal condensates, but the Formin CYK-1was absent*** (Extended Data
Fig.1). This demonstrates that cortical condensates contain molecules
that mediate branched F-actin nucleation, similar, for example, to
CD44 nanoclusters, dendritic synapses and podosomes® %, We also
noted that during their approximately 10 s lifetime (Fig. 1f) cortical
condensates were enriched firstin WSP-1and ARP2/3, and only then
F-actin accumulated before first losing WSP-1and ARP2/3 and then
F-actin (Fig. 1d,e). Given the time at which they appear and the fact
that they contain molecules that mediate branched F-actin nuclea-
tion, we speculate that dynamic cortical condensates play a role in
the formation of the first oocyte cortex.

We next asked if cortical condensates constitute a phase that coex-
ists with its surroundings. Such a phase is characterized by material
properties (such as density) that are intensive, thatis, independent of

1, WSP-1 self-recruitment
Il, WSP-1 dependent F-actin polymerization

Ill, F-actin dependent WSP-1 loss
IV, F-actin depolymerization

theoretical nullclines. Absolute molecular amounts can be estimated for WSP-1
with 81U corresponding to approximately 100 WSP-1 molecules. d, Measured
WSP-1(green) and F-actin (magenta) growthrates as afunction of
stoichiometry display three regimes separated by the WSP-1 nulicline at
stoichiometry approximately 0.85 and the F-actin nullcline at stoichiometry
approximately 0.9.e,f, Linear dependence of relative WSP-1(e) and F-actin (f)
growthrates—in the unperturbed control (blue) and mild arx-2RNAi (orange)
and moderate (mod.) RNAi (red) cases—on effective F-actin volume fraction ¢
(Supplementary Information). Linearity holds within the blue shaded region
(seeb, Extended DataFig. 2) andisindicated with lines, yielding the parameters
k., k,(e) and k,, k4 (). g, Reaction motifunderlying the structure of c-f
composed of WSP-1self-recruitment, WSP-1dependent F-actin polymerization,
F-actindependent WSP-1loss and F-actin depolymerization.

volume. We used the strain that simultaneously labels F-actin and WSP-1
to show that, throughout their brief lifetime (Fig. 1e,f), cortical con-
densates varied over two orders of magnitude in both Lifeact (4) and
WSP-1 (W) integrated fluorescence intensities (Fig. 1g). We estimated
the volume of cortical condensates from the cross-sectional area deter-
mined by segmentation® (Supplementary Methods), and found that
for intensity stoichiometries A/(A + W) between approximately 0.65
and approximately 0.93, they occupied a volume V well described
by summing the volume contributions of F-actinv,Aand WSP-1v,, W,
with volume coefficients v,=1.54x107(+1x10%) pm* U and
Uy =2.34x107(+2x1078) um?> IU! (where IU denotes total intensity
units, see Methods and Fig. 1i). This provides arelation between molec-
ular content and volume, but does not imply that condensates are
densely packed structures of only WSP-1and F-actin. Whereas cortical
condensates varied over two orders of magnitude in integrated fluo-
rescence intensities (Fig. 1g), the respective concentrations of WSP-1
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Fig.3|ARX-2 controls ensemble WSP-1/F-actin concentrationsinside
condensates by tuning condensate dynamics. a, Top, TIRFimage of cortical
condensatesinanunperturbed control oocyte. Bottom, kymograph
(determined along the dotted white line) revealing temporal dynamics. b, Top,
TIRFimage of cortical condensates under mild, moderate and severe arx-2
RNAi (lefttoright). Mild and moderate arx-2RNAi datasets corresponded
nominally to18-20 and 19-20 h of arx-2RNAi, respectively, and were
characterized by different numbers of condensates in the steady state
(Supplementary Information). Bottom, respective kymographs (determined
alongthe dotted whitelines) revealing temporal dynamics. Scale bars,

10 pm (a,b). ¢, Experimental (exp., orange and grey arrows) and theoretical
(theory, yellow, green and blue arrows) mass flux phase portrait of mild and
moderate arx-2RNAioocytes (leftand centre) and predicted severe arx-2RNAi
phase portrait (right) using k; estimated from the progressive change in k, from

and F-actin within the cortical condensates were significantly more
restricted in their variation (Fig. 1h). Thisis also reflected in the emer-
gence of a preferred pair of F-actin and WSP-1 concentrations main-
tained on average by the ensemble of cortical condensates (Fig. 1j). We
conclude that, on the one hand, cortical condensates are maintained
far from equilibrium: they are highly dynamic and each disassemble
after approximately 10 s. On the other hand, cortical condensates dis-
play signatures of a multicomponent condensed phase: they occupy
avolume determined by their molecular content and show an enrich-
ment of WSP-1and F-actin at concentrations distinct from their exter-
nal environment®*, Hence, the ensemble of stochastically appearing,
growing and subsequently dissolving cortical condensates effectively
forms a chemically active micro-emulsion, which, despite continuous
turnover, maintains a steady size distribution that does not coarsen™
(Fig.1k). Both the properties of acondensed phase and the mechanisms
underlyingits formation and dissolution can be revealed by a study of
growth kinetics.
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control to moderate RNAi datasets (Extended DataFig. 7and Supplementary
Notes). Colours denote time rate change vector magnitudes. Thick lines
indicate the measured WSP-1(magenta) and F-actin (green) nullclines; thin
linesindicate theoretical nullclines. Dashed lines indicate nullclines from
unperturbed control oocytes (Fig. 2c; Extended Data Fig.10b shows
nullclinesinasingle graph). The representative streamlineis showningrey.
d, Ahistogram of instantaneous concentrations of F-actin and WSP-1within
condensates for moderate arx-2RNAi. Here 68% and 25% of instantaneous
condensate concentrations fall within the respective blue contour lines. The
blue dotand orange and red stars represent the preferentially maintained
concentration pair for the ensemble of control, mild and moderate arx-2 RNAi
oocytes, respectively. Yellow dashed line: line of constant total density given
by volume relation.

Cortical condensate growth laws

Tostudy the growth kinetics of these cortical condensates, we quanti-
fied their compositions and volumes over time (Fig. 2 and Supplemen-
tary Methods). For asingle representative cortical condensate, Fig.2a,b
shows the time evolutions of (1) WSP-1and F-actin total condensate
intensity, (2) stoichiometry and (3) volume (Supplementary Notes 1
and 2).Forthe example shown, WSP-1precedes F-actininboth growth
and loss, stoichiometry grows monotonically with time, and volume
firstincreases and then decreases, and is well captured by summing
volume contributions from F-actin and WSP-1. We noted that neigh-
bouring condensates followed similar trajectoriesin composition and
volume despite forming stochastically and at different times (Fig.1c-e
and Extended DataFig.9). Thus, ata given time, neighbouring cortical
condensates that share their external environment can be at different
stages of their internal life cycle. We conclude that the growth kinetics
postnucleation are governed by condensate internal composition.
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Fig.4|Ensemble average concentrations are determined by the
stoichiometry with slowest dynamics. a, Phase portrait of condensate
dynamicsinthe ¢-V plane. Orange and grey arrows are determined from
measured WSP-1and F-actinamounts and, in contrast to Fig. 2c, using
measured condensate volumes based on the assumption that cortical
condensates have aspherical shape. Yellow, green and blue arrows are
calculated from the empirically determined growth laws expressed in the ¢p-V
plane. Colours denote time rate change vector magnitudes. The thick line
denotes the experimentally determined volume nullcline. b, Rate of change of
volume as afunction ofinstantaneous volume and effective F-actin volume
fraction. Condensates transition from growth to shrinkage at an effective
F-actinvolume fraction of 0.8 (the orange dashed line), which corresponds to

How does the internal composition of a cortical condensate influ-
enceits growthand shrinkage? To answer this question we developed
ageneral method to quantitatively study compositional dynamics in
anensemble of multicomponent condensates based on an analysis of
the mass fluxinto the condensates (mass balance imaging™). For this,
we quantified the time rate change of protein amounts within cortical
condensates as afunction of their internal F-actinand WSP-1amounts.
This time rate change of amountsis represented by a vector field, which
defines average trajectories in the space of WSP-1and F-actin amounts
(Fig.2c). Consistent with the representative example (Fig. 2a), average
trajectories formloops that pass through three subsequent regimes:
an early growth regime in which condensates first grow in WSP-1and
subsequently in F-actin amounts; a transition regime in which WSP-1
is lost while F-actin amounts still increase; and a disassembly regime
with loss of both WSP-1 and F-actin. The nullcline of WSP-1 dynamics
(thegreenlineinFig.2c), thatis, the WSP-1amounts above which con-
densates grow and below which they shrink in WSP-1content, reflects
anF-actin-dependent critical WSP-1amount for WSP-1growth. Stoichi-
ometryisconstantonlines that passthrough the origin, and hence the
WSP-1nulicline correspondsto athreshold stoichiometry of approxi-
mately 0.85. F-actin growth dynamics change from growth to shrinkage
atasimilar but slightly higher stoichiometry of approximately 0.9
(the magenta line in Fig. 2c shows the F-actin nulicline). We conclude
that cortical condensates become unstable and change from growth
to disassembly in the transition regime between the two nullclines.

The three regimes (growth, above the WSP-1 nullcline; transition,
between the two nullclines; disassembly, below the F-actin nullclinein
Fig. 2c) are also visible when plotting WSP-1 and F-actin growth rates
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theregion of slow kinetics within the transition region (Figs. 2d and cand d).
¢, Mass flux phase portrait current magnitude. Contour lines (68%, 25%) depict
the most commonly occupied total intensity values. The orange dashed line
indicates the effective F-actin volume fraction corresponding to the centre of
thetransitionregion (Fig.2d), and coincides with lowest total currents and
slowest kinetics. d, Concentration flux phase portrait current magnitude.
Contourlines (68%,25%) depict the most commonly occupied concentration
values and reflect the preferential maintenance of a pair of concentrations.
This pair of concentrations lies at the intersection of the line of constant total
density (yellow) and the line of dominant stoichiometry (orange), which
correspondstothe orangelinesina-candto the transitionregions of Fig. 2c,d
(seealso Extended DataFig. 5 for moderate arx-2RNAi conditions).

as a function of stoichiometry (Fig. 2d). Because the stereotypical
compositional trajectories (Fig.2a,b) involve amonotonicincreasein
stoichiometry with time, the x axis of Fig. 2d also represents a progres-
sionthroughtime. The dependence of growth rates on stoichiometry
reveals the mutual regulation of WSP-1and F-actin, and can be depicted
by the reaction motif shownin Fig. 2g. Processes 1 and Il are mediated
by WSP-1, whereas processes Illl and IV are mediated by F-actin. Pro-
cess | corresponds to WSP-1self-recruitment, evidenced by the fact
that at low stoichiometry, corresponding to condensates consisting
of mainly WSP-1, the WSP-1 growth rate is largest (Fig. 2d). Process I
denotes WSP-1dependent F-actingrowth, reflected by adecrease of the
F-actingrowthrate as stoichiometry increases. This is most evidentin
the transition regime of Fig. 2d. Process Il denotes F-actin-dependent
loss of WSP-1, reflected by the fact that WSP-1 growth rates decrease
withincreasing stoichiometry. This suggests that F-actin counteracts
the ability of WSP-1to self-recruit, similar to previously reported nega-
tive feedback of F-actin on its nucleation via Rho'*2, Finally, process
IV denotes F-actin depolymerization, reflected by the fact that F-actin
is lost fastest at the highest stoichiometry (Fig. 2d). Further support
for this reaction motif is provided by an analysis of WSP-1and F-actin
growth rates at constant WSP-1and F-actin amounts (Extended Data
Fig. 9), and an analysis of the impact of RNA interference (RNAi) of
proteins involved in regulating F-actin (Extended Data Fig. 4).

The shape of the measured phase portrait (Fig. 2c) and the shape of
the growth ratesW for WSP-1and Afor F-actin as a function of stoichi-
ometry (dots denote time derivatives; Fig. 2d) suggest the following
empirical growth laws that define a non-linear dynamical system®
(Fig. 2¢, Extended Data Fig. 3 and Supplementary Note 3):
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Here WSP-1self-recruitment dependslinearly on Wthrough the recruit-
ment rate k,, consistent with the ability of WSP-1 molecules to dimer-
ize*** (process I). Interactions between F-actin and WSP-1resultin
ARP2/3 mediated branched nucleation and a subsequent increase in
the amounts of F-actin®**. This behaviour is captured by the term kb%,
where k, is akinetic coefficient describing branching and condensate
volumeV=uA+ v, W depends on molecular amounts (see above and
also Supplementary Information; process II). Branched nucleation
coincides with a loss in WSP-1; this loss is captured by Iq% with the
kinetic coefficient k;describing the branching-dependent loss of WSP-1
(ref.>8; process IlI). Finally, F-actin is lost with rate k,, consistent with
severing and depolymerization® (process IV) (see also the simplified
depiction in Extended Data Fig. 6). Note that these four coefficients
together capture all the relevant molecular processes inside the con-
densates. Thismay include processes not discussed above. The math-
ematical form of all four terms is determined by the observation that
the relative growth rates W /W and A/A are linear functions of the
effective F-actin volume fraction ¢ = ";‘,—A (Fig. 2e,f; see alsodiscussion
inSupplementary Note 3). Figure 2e,falso allow us to estimate k,, k;, k,,
and ky. With these estimates, the simple growth laws describe the
experimental data well, and capture the entire mass flux phase portrait
together with the composition-dependent critical sizes as reflected
by nullclines (Fig. 2c).

The WSP-1 nullcline W,(A) = A(k - k.v,)/kvy, specifies a critical
amount of WSP-1above which WSP-1amounts grow and below which
WSP-1 amounts shrink. Notably, this critical amount is similar to a
critical droplet size for nucleation and growth, but here it stems from
biochemical reactions and not from condensation physics. The result-
ing growth laws exhibit a fixed point at (4, W) = (0, 0) with astable
(F-actin) and an unstable (WSP-1) direction. After nucleation, condensate
dynamics follow a homoclinic orbit, initially growing rapidly in the
unstable direction before turning and eventually undergoing disas-
sembly while moving along the stable direction back towards the fixed
point. Together, this represents a dynamic instability of condensates
that shares similarities with the dynamicinstability of microtubules:
cortical condensates transition from unstable growth to shrinkage,
which limits their size, and can display stochastic rescue events
(Extended Data Fig. 7).

Transition to unbounded growth

Tounderstand how the transition from condensate growth to conden-
sate disassembly is orchestrated, we used RNAi to perturb the interplay
between WSP-1and F-actin. RNAi of upstream signalling molecules that
regulate F-actin assembly, such as RHO-1 (Rho GTPase), CYK-1, CDC-
42 and CHIN-1 (CDC-42 GAP), as well as multivalent adaptors VAB-1
(Ephrinreceptor) and NCK-1 (Nck) did not affect condensate dynam-
ics***2 (Extended Data Fig. 4 and Supplementary Notes 4 and 7). This
suggests that cortical condensate dynamics are governed by feedback
structures independent of the major signalling pathways that regulate
the actomyosin cortex**. WSP-1 mediates branched F-actin nucleation
through the ARP2/3 complex**, and we thus performed RNAi against
ARX-2 (ARP2in the ARP2/3 complex in C. elegans**). Oocytes showed
reduced numbers of cortical condensates for less than 20 h of arx2
RNAI, whereas cortical condensates were absent for more than 20 h of
RNA:i (Fig. 3a,b and Extended Data Fig. 7A), consistent with a general
reduction of F-actin branched nucleation®.

We used the reduction in the number of cortical condensates as a
measure of the strength of the perturbation, and distinguished between
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mild (30 to 70 condensates per oocyte), moderate (70 to 120 conden-
sates per oocyte) and strong arx-2RNAi (no dynamic cortical conden-
sates). Mass balance imaging of cortical condensates in the mild and
moderate conditions revealed that, in comparison with the unper-
turbed case, compositional trajectories are progressively tilted towards
the WSP-1axis (Fig. 3c). The mathematical form of the growth laws is
maintained, but the associated coefficients are changed (Fig. 2e,f). Mild
and moderate arx-2 RNAi reduced the rate of WSP-1 self-recruitment
k. by17 £ 4% and 15 + 4%, respectively, and increased the coefficient
for moderate arx-2RNAiby 20 + 6% (1+ 5%). The branching coefficient
k, remained essentially unchanged, indicating that ARP2/3 amounts
are not rate limiting for ARP2/3 mediated branching inside cortical
condensates. The dominant effect of mild and moderate arx-2RNAi is
anapproximately1.7-and 2.7-fold increase, respectively, of the F-actin
loss rate k. This is consistent with previous findings that the ARP2/3
complex protects F-actin from depolymerizationin vitro*. In addition
to the changes of coefficients, mild and moderate arx-2 RNAi both
reduced the average F-actin concentration by afactor of approximately
1.4 and 1.5, respectively, and increased the average WSP-1 concentra-
tion by a factor of approximately 1.5 and 1.8, respectively (Fig. 3d). In
all three cases, no RNAi control, and mild and moderate arx-2 RNAi,
the pairs of average concentrations fall on the line of constant total
density of WSP-1and F-actin together (Fig. 3d, yellow dashed line; see
Supplementary Information). We conclude that the ARP2/3 complex,
largely throughitsimpacton F-actin disassembly, governs the transition
from condensate growth to condensate disassembly and determines
the ensemble-averaged pair of internal concentration along the line
of constant total density.

Strong depletion of ARX-2 by RNAi (more than 20 h of RNAi feeding
at20°C)resultedinaloss of dynamic cortical condensates, and acon-
siderably altered cortical architecture with large persistent patches of
F-actinand WSP-1 (Fig. 3b, right, Supplementary Video 5and Extended
Data Fig. 8). We asked if this phenotype can be understood given the
condensate growth laws above. It is not possible to determine the
four growth law coefficients for strong arx-2RNAi using mass balance
imaging, because there are no dynamic condensates. However, the
systematic change of both the F-actin loss rate k; and the condensate
number per oocyte for increasing strength of arx-2 RNAi enabled us
to provide alower-bound estimate of k, for the strong RNAi condition
(Extended Data Fig.7). We find that at and above this estimated value of
kythe system crosses acritical point at which the two nullclines switch
their position, with the F-actin nullcline now above the WSP-1nullcline
(Fig. 3¢, right). This causes a notable change in the growth dynamics
of cortical condensates, with acomplete loss of the homoclinic orbits
that transition from growth to shrinkage. Instead, condensates exhibit
unbounded growth consistent with the emergence of large persis-
tent patches of F-actin and WSP-1 (Fig. 3b, right; note that we expect
unbounded growth to ultimately become limited by effects we have not
considered in our description, such as the depletion of the monomer
pool).Inconclusion, our analysis suggests that a switching of nullcline
positionsinstrong arx-2RNAileads to uncontrolled F-actin growth and
impaired cortical activationin the oocyte, and therefore impaired later
development®* (Supplementary Notes 5 and 6).

Ensemble properties

How do the growth kinetics lead to a specific pair of average internal
concentrations and therefore aspecific stoichiometry? To address this
question, we change variables from F-actinamount A and WSP-1amount
Wto effective F-actin volume fraction ¢ = v, A/V and condensate vol-
ume V. Figure 4a shows that the calculated phase portrait in the ¢p-V
plane obtained by achange of variables of the empirically determined
growth laws is consisted with the experimental one determined from
measured WSP-1and F-actin amounts and measured condensate vol-
umes. Figure 4b shows that the transition from condensate growth



(red) to shrinkage (blue) occurs at an effective F-actin volume fraction
of approximately 0.8, corresponding to a stoichiometry of approxi-
mately 0.86. Notably, at this stoichiometry the rate of change of con-
densate volumes and stoichiometry is slowest (orange dotted linesin
Fig. 4a,b,d), implying that the ensemble of dynamic condensates is
governed by this slowly varying, thus dominant, stoichiometry. Hence,
the peak of the concentration histograms (Figs. 1j and 3d) occurs at
the point at which the line of dominant stoichiometry intersects with
the line of constant total density (Fig. 4d).

Intensive chemical reaction dynamics

We also recognized that the time evolutions of the effective F-actin
volume fraction ¢ and the WSP-1and F-actin concentrations are inde-
pendent of condensate volume (Supplementary Notes 8-10). Thus,
condensate dynamics areintensive, which is consistent with mass action
kinetics in well-mixed systems. However, conventional mass action
kinetics change reactant concentrations at constant volume, but usually
donotinvolve assembly and disassembly as is the case here. Note that
intensive condensate dynamics are not consistent with the conventional
kinetics of nucleation and growth of liquid-like condensates, in which
assembly rates depend on condensate size*®*, This reveals that cortical
condensates exhibit an unconventional chemical kinetics in which mass
action governs assembly and disassembly, and therefore the effect of
mass action dynamics on concentrations in condensates is modified
(Supplementary Notes 8-10). Note, however, that even though cortical
condensates do not assemble via classical nucleation and growth, the
intensive condensate dynamics show that the condensate material
behaves as awell-mixed phase with size-independent properties. Inten-
sive reaction dynamics are expected to arise in situations in which the
time for diffusion across the condensate is shorter than the typical time
associated with a chemical reaction. The condensate dynamic instabil-
ity limits cortical condensate size. Therefore, reaction dynamics remain
intensive and the resultant chemically active micro-emulsion maintains
asteady-state size distribution (Fig. 1k)™.

Discussion

To conclude, cortical condensates represent a new type of non-
equilibriumbiomolecular condensate that assembles and disassembles
via anon-linear dynamic process governed by mass action chemical
kinetics. They recruit molecules that drive branched nucleation of
F-actin and support the activation of the actomyosin cortex. The
dynamics of the growth and shrinkage of cortical condensates are
similar to the dynamic instability of growing and shrinking microtu-
bules', butarisesinabulk assembly that forms a phase. We suggest that
the formation and subsequent dissolution of cortical condensates viaa
condensate dynamicinstability serves to control autocatalytic F-actin
nucleation and prevents runaway growth during the activation of the
first cortical actin meshwork in the C. elegans oocyte.
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Extended DataFig.1|Cortical condensate components. A, Top,
three-colourimaging of eGFP::WSP1; ARX2::tagRFP and LifeAct::HaloTag;
zoomed insets and bottom show arepresentative cortical condensate example
(boxed) together withits time evolution, revealing that the order of arrival of
components is WSP-1followed by ARX-2 and F-actin. B, Top, two-colorimaging
of CAP-1::eGFP; Life-Act::mkate2, zoomed insets and bottom show a
representative cortical condensate example (boxed) together withits time
evolution, revealing that that CAP-1comes after F-actin. C, Comparing the
temporal order of componentsin A, Bbyalignmentin time withrespecttothe
maximum LifeAct signal reveals that the order of components recruitmentis
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WSP-1, ARP2/3, F-actin, and CAP-1.D, Top, two-color imaging of CAP-1::eGFP;
LifeAct::mkate2,zoomed insets and bottom show arepresentative cortical
condensate example (boxed) together withits time evolution. CYK-1/Forminis
not presentin cortical condensates, but found in contractile actomyosin
pulsesjust prior tolarge-scale contractions. E, Labeling F-actin via Utrophin
(left) leads to similar time series as when labeling F-actin via LifeAct (right).
Bottomimages, respective kymographs determined along dotted white line.
Note thatinthe condition where both LifeAct and Utrophin wereimaged (right)
colocalizationis high between the two channelsin the first couple of frames
only duetodifferential bleaching. Scale bars, 10pm.
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Extended DataFig.2|Volume dependence on molecular content. Deviation
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for F-actin volume fractions ¢ <~ 0.6 and ¢ >~ 0.9. Note the deviation from
linearity in Fig. 2e,fcoincides with the range of volume fractions where
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empiricalgrowthlaws. A, B, WSP-1(A) and F-actin (B) growthratesasa
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respectively). C,D, WSP-1(C) and F-actin (D) growth rates as a function of
F-actinat constant levels of WSP-1 (increasing darkness of dot color represents
thefirstsecond and third lowest WSP-1bins of Fig. 2c, respectively). Insetsin
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moderate arx-2RNAidatarepresentedinFig.3. Orange-grey arrows, measured F-actin volume fraction correspondingto the center of the transition
asinFig.2c. Yellow-green-blue, calculated using the empirically determined region (Fig.2d), and coincides with lowest currents and slowest kinetics.
growthlaws. Colors denote time rate change vector magnitudes. The time D, Concentration flux phase portrait current magnitude. Contour lines
evolution of effective F-actin volume fractionisindependent of volume (also (68%,25%) depict the most commonly occupied concentration values and
see supplement). B, Rate of change of volume (blue-red heatmap) as afunction reflect the preferential maintenance of a pair of concentrations. This pair of
ofinstantaneous volume and effective F-actin volume fraction. Condensates concentrationslies at the intersect of the line of constant total density (yellow)
transition from growth to shrinkage at an effective F-actin volume fraction of and theline of dominant stoichiometry (orange) which corresponds to the

0.5 (orange-dashed line), which corresponds to the region of slow kinetics orangelinesin (A-C) and to the transition regions of Fig. 2d.
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underly the dynamicinstability of condensates are WSP-1self-recruitment, condensate growth molecular mechanisms are likely to be more involved, but
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Extended DataFig.7|Transition tounbounded growth, andrescue events.
A, Thesteady state number of condensates per oocyte in non-RNAi control
oocytesandinoocytessubjected to18-20hrs of arx-2RNAi was used to classify
RNAi phenotypeseverity - mild (between 30 and 70 cortical condensates per
oocyte) and moderate (between 70 and 120 cortical condensates per oocyte)
arx-2RNAIi. B, Non-RNAi control, mild and moderate arx-2RNAi conditions as
describedin Ashowed asystematicincreasein k,with adecrease of the number
of cortical condensates per oocyte.In A, B the control, mildand moderate
datasets comprisedn=9,n=7andn="7oocytesrespectively while the error
bars correspondto standard errors of mean (A) and the margin of error of a 95%
confidenceinterval (B) respectively. Severe arx-2RNAi leads to aloss of
dynamic cortical condensates (with zero condensates per oocytes) and the
emergence of large persistent patches of WSP-1and F-actin, inagreement with
unbounded growth (Fig. 3b, right). Hence, we expect the value of k,at zero
cortical condensates per oocyte to coincide with the critical value of k,at which
condensate dynamics become unbounded. Alinear fit (dashed line) provides
an extrapolated estimate of the y-intercept value of k,= 0.49 + 0.04. Note that
this valueis similar to the critical value of k,~ 0.47 at which the nullclines switch
position (with the three other growth coefficients determined from moderate
arx-2RNAI), with the A-nullcline now above the W-nullcline (see Fig. 3¢, right;
compareto left, middle). In the graph above, the x on the y-axis marks the value
of k;=0.51used for calculating the phase portrait for severe arx-2RNAi (Fig. 3c,
right), whichisinthe unbounded growthregime.C, Left, rescue eventsinthe
representative image shownin Fig. 1c. Top, snapshot; bottom, kymograph
alongwhiteline showing rescue events (indicated by green boxes). Right, one
representativerescue event of a cortical condensate showing two cycles of
growth and shrinkage, separated by rescue. Top, time-series; middle,
kymograph; bottom, integrated WSP-1intensity. Scale bar, 10um.



Extended DataFig. 8| Alternative perturbations ofthe ARP2/3 complex. cases, aswith 24 hof arx-2RNAI (Fig. 3bright), large persistent patches of WSP-1
A,B, Snapshots (top) and kymographs (bottom) of C. elegans oocytes and F-actinare observed. Scalebar, 10pm.
subjected to (A) CK666 drug treatment and (B) 24 harx-5RNAi (right). Inboth
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Extended DataFig. 9 |Representative example oflocal condensates (white arrowheads) sharing the same local environment but
environment-independent condensate growth dynamics. Arepresentative exhibiting compositionally distinctinstantaneous growth. Another example is
C.elegansoocyte cortex over time withzoomed insets showing three showninFig.1d. Scale bar,10um.
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