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Chemical event chain model of coupled genetic oscillators
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We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved
in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady
states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady
state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of
stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works
best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model
for phase oscillators that are coupled by signals with distributed delays.
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I. INTRODUCTION

Biological cells are complex dynamic systems which use
specific proteins to activate and inhibit genes in order to ensure
robust control of cellular functions [1,2]. The production
of such proteins themselves is mediated by gene activity,
giving rise to feedback systems and complex dynamics. The
production of a gene product from an active gene comprises
a series of chemical events such as transcription of DNA
to RNA, splicing, and translation of RNA to a protein [3].
Gene regulation involves, e.g., the transport and binding of
regulatory proteins to DNA. Gene products can also serve
as chemical signals that are mediated across different cells
through so-called signaling pathways that involve production,
transport, and binding of signaling molecules to receptor
molecules or DNA [4]. Such sequences of chemical events typ-
ically involve the generation of intermediate products such as
messenger RNA (mRNA), transcription factors, and signaling
ligands. Because of their complexity, such systems are often
represented by simplified chemical rate equations that bypass
intermediate steps and often neglect fluctuations [5]. Motivated
by an earlier approach [6], we propose to describe genetic
feedbacks by chemical event chains composed of a sequence
of Poisson processes, see Fig. 1. These chains represent the
sequences of transitions between intermediate chemical states,
e.g., between mRNAs of different lengths and from mRNA
to spliced mRNA. This approach captures generic stochastic
properties of complex cellular processes and can be used to
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generate an adequate stochastic description starting from a
chemical reaction scheme.

Genetic oscillators are a prime example of genetic feedback
systems, in which stochastic properties are important. A
prominent genetic oscillator is the circadian clock of humans,
animals, and plants, where oscillations are used to provide
information about the daytime to the organism [7–15]. Genetic
oscillators also play an important role during embryonic
development, e.g., in neuronal differentiation [16,17] and the
segmentation of the body axis [17–19]. Genetic oscillators are
characterized by gene regulatory networks that autonomously
generate time-periodic changes in gene product numbers of
so-called cyclic genes [5,6,20]. This is typically achieved
by a negative transcriptional feedback of the cyclic genes
on themselves that involves a sufficiently large time delay
[5,21,22]. In recent years, genetic oscillators have also been
engineered in artificial systems [20,23–29]. Both natural and
artificial genetic oscillators exhibit pronounced amplitude and
phase noise [6,12,24,30–36], which limits their precision when
used as a clock. To achieve temporal and spatial coherence
as well as high precision, cell-autonomous oscillators are
typically coupled [19,37,38]. Such coupling facilitates syn-
chronization and can affect the collective frequency [39–47].
Moreover, coupling between cellular oscillators via paracrine
or juxtacrine signaling (i.e., via diffusible signals or contact-
dependent signaling) typically proceeds at time scales similar
to the oscillation period, implying the presence of coupling
delays that can have profound effects on the coupled dynamics
[21,40–42,48].

In this paper, we present a framework to study the stochastic
properties of genetic oscillators that are coupled by signaling
pathways. As an example we consider the zebrafish somitogen-
esis oscillator [17,37], see Fig. 2. We investigate the precision
and stochastic properties of collective oscillations and how
they emerge from the kinetics of chains of chemical events.
Finally, we present an effective phase oscillator model that
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FIG. 1. Exemplary depiction of a simple genetic feedback system
with a gene x and a gene product y. (a) Simplified feedback scheme
that can be mapped onto a dynamic system and (b) representation as a
chemical chain involving intermediate chemical states xi and yi that
can be mapped onto a master equation.

captures key features of this system. It is based on distributions
of delay times in the oscillator coupling that captures collective
frequency and stability properties of stochastic oscillations.

II. CHEMICAL EVENT CHAIN MODEL OF COUPLED
GENETIC OSCILLATORS

We first introduce a Markov model for chemical event
chains that captures the genetic interactions of coupled ze-
brafish somitogenesis oscillators (Fig. 2), see Fig. 3(a). The
state of the system is specified by the occupation numbers
of each step of the chain. We denote the number of signaling
molecules of oscillator μ = 1,2 at step i = 0, . . . ,n by xμi and
the number of cyclic molecules at step i = 0, . . . ,ñ by x̃μi , see
Fig. 3(a). Synthesis of cyclic molecules takes place at the initial
step i = 0 of the oscillators. Molecules undergo a transition
from step i to i + 1 at a constant transition rate and decay
at the final step i = ñ. The synthesis rate of both cyclic and

Delta 
ligand

Notch 
receptor

Notch intracellular
domain (NICD)cyclic genes

genetic oscillator

FIG. 2. The zebrafish somitogenesis oscillator as an example
for coupled genetic oscillations. Shown are two cells that act as
autonomous oscillators and that are coupled through the Delta-Notch
signaling pathway, an example for juxtacrine signaling [37,49].
Coupling is bidirectional, that is, each cell acts as both a sender and
a receiver. During embryonic development, a tissue comprising these
cellular oscillators guides the segmentation of the elongating body
axis [19].

signaling molecules is regulated by the amount of molecules at
the final step i = ñ of the oscillator. Signaling molecules also
undergo transitions through a sequence of steps with the last
step of the signaling pathway regulating the synthesis rate of
cyclic molecules in the receiving oscillator.

A. Model formulation

We describe the dynamics of the system using a master
equation [50] that governs the time evolution of the probability
P (x,t) to find the system in the state x at time t , where

x = (x̃10, . . . ,x̃1ñ,x10, . . . ,x1n,x̃20, . . . ,x̃2ñ,x20, . . . ,x2n)

is the state vector of all occupation numbers. The master
equation is given by

∂P

∂t
=

2∑
μ=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̃

ñ−1∑
i=0

[(x̃μi + 1)Ẽ
+
μiẼ

−
μ,i+1 − x̃μi]

︸ ︷︷ ︸
oscillator chain

+ κ̃[(x̃μñ + 1)Ẽ
+
μn − x̃μñ]︸ ︷︷ ︸

decay of the cyclic product

+ ψ−

(
x̃μñ

p

)[
α̃ + βψ+

(
xμ̄n

q

)]
(Ẽ

−
μ0 − 1)

︸ ︷︷ ︸
regulation of cyclic genes

+ λ

n−1∑
i=0

[(xμi + 1)E+
μiE

−
μ,i+1 − xμi]

︸ ︷︷ ︸
signaling chain

+ κ[(xμn + 1)E+
μn − xμn]︸ ︷︷ ︸

decay of the signaling product

+ αψ−

(
x̃μñ

q̃

)
(E−

μ0 − 1)
︸ ︷︷ ︸
regulation of signaling genes

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

P. (1)

Here μ̄ = 2δμ,1 + 1δμ,2 refers to the index of the re-
spective other oscillator. The creation and annihilation
operators E±

μi increase or decrease the product levels
xμi by 1, E±

μif (x10, . . . ,xμi, . . . ,x2n) = f (x10, . . . ,xμi ±
1, . . . ,x2n), and analogously for the operators Ẽμi and product
numbers x̃μi [51]. The kinetic parameters characterizing the
biochemical properties of gene expression and interaction are
listed and explained in Table I and shown in Fig. 3(a). Acti-
vation and repression of gene expression at the initial stages

of the oscillators and the signaling pathways are described by
functions of the Hill type [5],

ψ−(x) = 1

1 + xh
, ψ+(x) = xh

1 + xh
, (2)

where ψ− describes inhibition and ψ+ describes activation and
the exponent h determines the nonlinearity of the feedback, see
Fig. 3(b). Here we are interested in steady-state solutions of the
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TABLE I. Parameters used for numerical simulations. “N” refers
to molecule numbers and “T” is the unit of time.

Parameter Units Value Description

Oscillators
ñ 1 18 Number of steps
α̃ NT−1 60 Basal production rate
λ̃ T−1 1.5 Transition rate between steps
κ̃ T−1 0.5 Decay rate for the final product
p N 20 Threshold for cyclic autoinhibition
β NT−1 20 Activation strength due to signaling
Signaling pathways
n 1 10 Number of steps
α NT−1 60 Basal production rate
λ T−1 0.5 Transition rate between steps
κ T−1 0.5 Decay rate for the final product
q N 100 Threshold for activation by signaling
q̃ N 20 Threshold for repression of signaling
h 1 2 Hill exponent (repression, activation)

master equation (1), which describe the long-term collective
behavior of the system.

B. Characterization of oscillator coupling
via stochastic signaling

We first summarize features of the introduced coupling pro-
cess that are useful to parametrize the system and understand its
limiting cases. The coupling strength depends on several model
parameters: the production rate α and inhibition threshold q̃ of
the signaling molecules in the sending oscillator, as well as the
activation rate β and the activation threshold q in the receiving
oscillator, see Fig. 3 and Table I. The limiting case of uncoupled
oscillators can be realized through (i) α = 0, (ii) β = 0, (iii)
q → ∞, (iv) q̃ → 0, or any combination thereof.

Moreover, the chain of Poisson processes of the signaling
pathway effectively generates a Gamma distribution of arrival
times for molecules starting at step i = 0 and arriving at step

i = n [6],

g(t) = λn

(n − 1)!
tn−1e−λt . (3)

Hence, the mean τ and variance σ 2 of this distribution charac-
terize the mean signaling delay and the dispersion of signaling
delays,

τ = n/λ, σ 2 = n/λ2. (4)

The arrival time distribution g can be interpreted as a memory
kernel for a probability that effectively summarizes the effects
of noise and delays introduced by stochastic signaling.

C. Correlation functions and oscillator quality

Before studying the dynamics of the coupled genetic os-
cillator system, we introduce measures that characterize their
function: the quality factor measuring frequency fluctuations
and the cross correlation measuring synchrony. To define these
quantities, we introduce the temporal correlation function Cμν

between the final products x̃μñ and x̃νñ of the oscillators μ

and ν,

Cμν(t) = 〈x̃μñ(t)x̃νñ(0)〉 − 〈x̃μñ〉〈x̃νñ〉, (5)

where the brackets denote steady-state expectation values. The
quality factor of an oscillator can be defined as follows. The
normalized temporal autocorrelation function of an oscillator
is given by

G(t) = Cμμ(t)

Cμμ(0)
. (6)

Since both oscillators and signaling pathways are entirely
identical, the autocorrelation G does not depend on the os-
cillator index μ. For a noisy oscillator, this autocorrelation
function typically exhibits a functional form of the type
G(t) � cos(2πt/T )e−t/tc for large t , where T is the period
of oscillations and tc is the correlation time. We define the
quality factor Q as the dimensionless ratio of the correlation
time and the oscillation period [6,52],

Q = tc/T . (7)

1 2

(a) (b)Oscillator #1 Signaling pathways Oscillator #2
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FIG. 3. (a) Schematics of the chemical event chain model of two coupled genetic oscillators as described by Eqs. (1) and (2). Boxes mark
the initial and final products of a multistep process and broken lines the intermediate products. (b) Hill functions ψ− and ψ+ as given by Eqs. (2)
for different values of the exponent h.
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FIG. 4. Example time series of the cyclic final products x̃1ñ

and x̃2ñ for different synchronization scenarios: (a) in-phase, (b)
uncorrelated, and (c) antiphase. For all plots, parameters are given
in Table I except for the transition rate λ, which is chosen such that
the effective coupling delay τ , given by Eq. (4), takes values τ = 0.1T

(a), τ = 0.2T (b), and τ = 0.5T (c), where T = 28 is the period of
the uncoupled oscillators.

The quality factor Q corresponds to the number of cycles
over which the oscillatory signal stays highly correlated, thus
quantifying the number of cycles over which the oscillators
serve as a viable clock.

The synchrony of two stochastic trajectories is related to the
degree of correlation of their individual dynamics. To quantify
synchrony, we compute the normalized cross-correlation of the
final products of the oscillators,

C = C12(0)√
C11(0)C22(0)

, (8)

with Cμν given by Eq. (5). The cross-correlation C describes
the fraction of shared fluctuations between both signals and
its sign indicates the mode of synchrony: C takes values in
the interval [−1,1], ranging from perfect correlation (C = 1)
to no correlation (C = 0) to perfect anticorrelation (C = −1),
which in the case of oscillations corresponds to in-phase oscil-
lations, phase-drifting oscillations, and antiphase oscillations,
see Fig. 4.

III. FREQUENCY, QUALITY, AND SYNCHRONY OF
COUPLED GENETIC OSCILLATORS

We numerically investigate frequency, quality, and syn-
chrony of the coupled genetic oscillators by generating mul-
tiple realizations of the stochastic process described by the
master equation (1) using numerical simulations, see Fig. 4 for
examples. The simulation method is detailed in Appendix A.

A. Coupling delays determine the mode of synchrony

First, we study how coupling via stochastic event chains af-
fects the mode of synchrony of the two oscillators. To this end,
we focus on the parameters β and q as a measure of coupling
strength and vary the mean signaling delay τ by changing the
transition rate λ (see Section II B). We find that stochastic sig-
naling delays determine whether the oscillator system exhibits
in-phase, antiphase, or uncorrelated oscillations: Figures 5(a)–
5(c) show density plots of the cross correlation C as a function
of the effective coupling delay τ as well as the activation rate β,
the activation threshold q, and the decay rate κ of the signaling
molecules. These plots reveal an alternation of in-phase and
antiphase correlated regions as a function of the signaling delay
τ with in-phase regions located around integer multiples of
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(e) (f)
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FIG. 5. Coupling delays determine the mode of synchrony and the collective frequency. [(a)–(c)] Density plots of the cross correlation C,
Eq. (8). Blue colors indicate positive values of C corresponding to in-phase correlations; red colors indicate negative values of C corresponding
to antiphase correlations. [(d)–(f)] Density plots of the collective frequency 
. The parameters that are not varied are given in Table I.

032409-4



CHEMICAL EVENT CHAIN MODEL OF COUPLED GENETIC … PHYSICAL REVIEW E 97, 032409 (2018)

(a)

(b) (c)

Quality factor

FIG. 6. Coupling enhances precision. Density plots of the quality
factor Q, Eq. (7), as a function of the scaled mean coupling delay
τ/T and (a) the activation strength β, (b) the activation threshold q,
and (c) the decay rate κ of signaling molecules. The graded bar on top
of each panel indicates the range of Q/Q0 values where Q0 = 20.8
is the quality of an uncoupled oscillator. The parameters that are not
varied are given in Table I.

the uncoupled period T and antiphase regions located around
odd multiples of T/2. This behavior is generally known for
coupled oscillators with delayed coupling [53]. For increasing
signaling delays τ , which imply increasing dispersions σ of
delay times in our parametrization, the correlations between the
oscillators decay until eventually; for large signaling delays,
the oscillators become effectively uncoupled. Regions with a
high degree of correlation (large |C|) are separated by regions
of uncorrelated oscillations.

B. Coupling affects the collective frequency

As shown above, coupling tends to synchronize oscillators,
implying that they attain a common collective frequency.
If coupling is delayed, as is the case here, this collective
frequency can differ from the frequency of the uncoupled
oscillators [53,54]. Figures 5(d)–5(f) show density plots of the
collective frequency 
 of both oscillators, obtained from the
autocorrelation, Eq. (6), as a function of the same parameters
as in Figs. 5 and 6. As a function of the signaling delay τ , these
plots reveal sharp changes of the frequency at odd multiples of
T/4. This indicates that the collective frequency of in-phase
correlated states is distinct from those of antiphase correlated
states, compare to Figs. 5(a)–5(c). For large signaling delays,
the effect of coupling on the collective frequency vanishes.
We will address the dependence of the collective frequency
on the signaling delay when studying a phase oscillator
approximation in Sec. IV.

C. Coupling enhances the quality of oscillations

Next we investigate how the precision of oscillations in the
coupled system is affected by stochastic coupling. Figure 6
shows the quality factor Q as a function of the same parameters
as in Fig. 5. As the delay τ increases, the quality factor shows
distinct maxima and minima of decreasing magnitude. Maxima
of the quality appear in region where both oscillators show a
high degree of in-phase or antiphase correlation, compare to
Figs. 5(a)–5(c). For large delays, the quality settles towards a
low value and eventually becomes independent of the delay.
This decay of the quality is due to the increase in the width σ

of the delay distribution which accompanies the increase in τ ,
see Eq. (4). As the spread of the delay distribution increases,
temporal information about the sending oscillator’s state is
lost along the signal pathway due to fluctuations and, thus,
information transmission becomes unreliable.

The coupling strength affects the quality factor as well,
with stronger coupling leading to higher qualities: The quality
factor monotonically increases with the activation strength β.
In the parameter range investigated here, coupling can lead
to an order-of-magnitude increase of the quality compared to
the uncoupled case, see Fig. 6(a). The activation threshold q

has a qualitatively different effect on Q. Quality is maximized
for threshold levels q close to the mean final product number
〈xμn〉 of the signaling pathways and decays for smaller or larger
values, see Fig. 6(b). Interestingly, since the quality depends
on the mean signaling delay τ in the same nonmonotonic way
as above, islands of high quality containing local extrema are
observed in parameter space. The behavior of the quality as
a function of the decay rate κ as shown in Fig. 6(c) suggests
that in addition to the signaling delay τ , the decay time κ−1 of
the signaling molecules effectively contributes to the total cou-
pling delay. This is indicated by the leftward tilt of high-quality
islands for low decay rates, see Fig. 6(c). Again, for constant
decay rate κ , a nonmonotonic behavior of the quality in the
coupling delay τ can be observed. Hence, we find that the non-
monotonic behavior of the quality in both the coupling delay
and the coupling strength results in multiple separated islands
in parameter space that give rise to high-precision oscillations.

D. Stochastic switching between in-phase
and antiphase synchrony

In the transition regions between in-phase and antiphase
correlations (where τ ≈ (2n + 1)T/4 with integer n and T

being the period of the uncoupled oscillators), stochastic
switching between in-phase and antiphase correlated oscilla-
tions occurs in single realizations of the system. Switching
events can be observed by direct inspection of the time series
of final products, see Fig. 7(a). The degree of correlation within
a single realization of the system can be displayed by means
of the windowed normalized cross correlation,

c(t) = c12(t)√
c11(t)c22(t)

, (9)

where

cμν(t) = 〈〈x̃μñx̃νñ〉〉t − 〈〈x̃μñ〉〉t 〈〈x̃νñ〉〉t , (10)

and 〈〈f 〉〉t = w−1
∫ w/2
−w/2 f (t + s) ds denotes a time average

over a time window with width w. Figure 7(b) shows the
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FIG. 7. Stochastic switching between antiphase and in-phase synchronized oscillations. (a) Time series of products x̃1ñ and x̃2ñ showing a
switching event between antiphase and in-phase oscillations. Parameters are given in Table I except for β = 120 and λ = 5/3. (b) Windowed
cross correlation c of the time series in (a), see Eq. (9), showing the three distinct regimes. The width of the averaging window is w = 4T . (c)
Wavelet scalogram of one of the time series in (a). Bright regions indicate strong period components. The white dashed line serves as a guide
for the eye.

windowed cross correlation c for the realization shown in panel
(a). Starting from antiphase correlations (c ≈ −1), the system
goes through an extended phase of uncorrelated oscillations
before attaining an in-phase synchronized state (c ≈ 1). With
the mode of synchrony, the collective frequency of the system
changes as well: Figure 7(c) shows a density plot of a
wavelet transform of one of the time series, corresponding
to a time-dependent period spectrum (see Appendix B for
technical details). During the anti-phase state, the bright
regions, indicating strong period components, are centered
around the white dashed line. After the transition to the
in-phase state, the bright regions fall almost entirely below
the white dashed line, indicating an increased period. This
frequency change is consistent with the frequency differences
between in-phase and antiphase correlated states, compare to
Figs. 5(d)–5(f).

Clearly, stochastic switching between different modes of
synchrony and collective frequencies including extended tran-
sient periods affects the long-time behavior of the autocorre-
lation, effectively resulting in an impairment of the precision.
In addition, the presence of two slightly detuned collective
frequencies leads to beating patterns in the autocorrelation
function Eq. (6), so that in these cases, the quality factor Q

obtained from fits of the autocorrelation captures the average
period and an effective correlation time (see Sec. II C) and
can even drop below the single-oscillator quality Q0. This

impairment contributes to the low-quality regimes that separate
the regions of high quality observed in Fig. 6.

IV. EFFECTIVE PHASE MODEL

The chemical event chain model Eq. (1) describes how
stochastic coupling affects the collective modes and their
frequency, see Fig. 5. We aim to capture the key features
of these collective modes using a simpler theory of delay-
coupled phase oscillators. Phase oscillator models reduce the
complexity of limit cycle oscillators to the dynamics of a phase
variable φ ∈ [0,2π ) representing the state of oscillator while
neglecting the amplitude dynamics [55–57].

A. Phase oscillators with distributed coupling delay times

The dynamics for the phase φμ of oscillator μ = 1,2 is given
by

dφμ

dt
= ω + ε

∫ ∞

0
g(s) sin[φμ̄(t − s) − φμ(t)] ds, (11)

where ω is the intrinsic frequency of the autonomous os-
cillators, ε is the coupling strength, g is the distribution of
delay times, and μ̄ denotes the respective other oscillator as
in Eq. (1). The coupling term in Eq. (11) dynamically alters
the instantaneous frequency of the oscillator depending on the
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phase relationship to the other oscillator. For the distribution g

of delay times, we here choose the Gamma distribution Eq. (3)
that describes the distribution of arrival times of signaling
molecules.

We now show that Eq. (11) can describe many qualitative
features of the in-phase and antiphase synchronized states
observed in the stochastic theory. The in-phase synchronized
state, given by φμ(t) = 
t , is characterized by both oscillators
evolving with the same collective frequency 
 and having no
phase lag relative to each other. Using this ansatz in Eq. (11)
yields an implicit transcendental equation for 
,


 = ω − ε

(
1

1 + 
2/λ2

)n/2

sin

(
n arctan




λ

)
. (12)

The system can also exhibit an antiphase synchronized state,
φ1(t) = 
̄t = φ2(t) + π , where the corresponding collective
frequency 
̄ obeys Eq. (12) with ε replaced by −ε. In both
cases, the collective frequency satisfies the bound

ω − ε � 
 � ω + ε, (13)

implying that 
 can only deviate from the intrinsic frequency ω

by the coupling strength ε. Moreover, we find that 
 → ω for
λ → 0, implying that for increasing delays due to an increased
jump rate, the collective frequency becomes independent of
coupling, a behavior that we also found in the chemical event
chain model, see Figs. 5(d)–5(f). The special case of a single
discrete delay, g(t) = δ(t − τ ), corresponds to the limit n →
∞ with λ = n/τ and fixed τ and, in this case, Eq. (12) becomes


 = ω − ε sin(
τ ), (14)

a result well known in the literature [42,53,54,58].
Figure 8 shows the collective frequencies for systems with a

distribution of delays, Eq. (12), and for systems with a discrete
coupling delay, Eq. (14). In both cases, for a given set of
parameters, this equation can exhibit multiple solutions in 
.
However, compared to a discrete delay, a distribution of delay
times leads to a decaying dependence of the collective fre-
quency on the coupling delay if the number of steps n is fixed.
Using a standard linear stability analysis, an analytical criterion
for the stability of the in-phase and antiphase synchronized
states can be found, see Appendix C. In Fig. 8, stable states are
indicated by solid curves and unstable states by dashed curves.
This also illustrates that in-phase and antiphase solutions can
be simultaneously stable in certain parameter regions.

B. Comparison of phase oscillator model
and chemical event chain model

We now show that the phase oscillator model Eq. (11) can
capture the key features of the collective modes described
by the chemical event chain model Eq. (1). We compare the
collective frequency 
, Eq. (12), obtained from the phase
model to the frequency spectrum of oscillations from the
chemical event chain model. For the distribution g of delay
times in the phase model, we adopt the parameter values of λ

and n used in the chemical event chain model. For the intrinsic
frequency ω in the phase model, we use an estimate provided
in Ref. [6] for a single uncoupled oscillator of the same type

(a)

(b)

in-phaseanti-phase

FIG. 8. Collective frequency 
 of the phase oscillator system
Eq. (11) (curves) and its asymptotic state for given constant initial
phase differences �φ (region plots) as a function of the scaled
coupling delay τ/T (see Sec. IV B). Blue curves show the in-phase
synchronized state, and red curves show the antiphase synchronized
state. Solid curves show stable solutions, and dashed curves show
unstable solutions. (a) System with a distribution of delay times
for n = 10 and different mean delays τ obtained by varying λ.
The collective frequency is determined by Eq. (12). (b) Collective
frequency for a discrete delay time τ , determined by Eq. (14). In both
plots, ω = 0.224 and ε = ω/4.

as investigated here,

ω � π

ñλ̃−1 + κ̃−1
. (15)

The coupling strength ε is the only parameter in the phase
model whose relationship to the kinetic parameters of the event
chain model is not obvious. For simplicity, we here assume that
ε scales linearly with the activation strength β in the chemical
event chain model (see also Sec. II B) and fix the ratio r = ε/β

by hand.
We assess whether the synchronized states of both models

agree by comparing the frequency and stability solutions of
the phase model to periodograms of the chemical event chain
system [59]. Figures 9(a)–9(d) show such periodograms for
different activation strengths β, with bright regions indicat-
ing strong frequency components. Figures 9(e)–9(h) show
the same density plots, superimposed with solutions for the
collective frequency 
, Eq. (12). The dominant frequency
components exhibit characteristic jumps at delays being odd
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(a) (c) (d)

(e)

(b)

(f) (g) (h)

FIG. 9. Collective frequency as a function of the scaled coupling delay τ/T for different activation strengths β: [(a) and (e)] β = 30, [(b)
and (f)] β = 60, [(c) and (g)] β = 90, [(d) and (h)] β = 120. [(a)–(d)] The density plots show logarithmic periodograms of oscillations in the
chemical event chain model, where bright regions correspond to strong frequency components. [(e)–(h)] The curves (superimposed on the same
density plots as in (a)–(d)] show the collective frequencies of the in-phase (black) and antiphase (white) solutions of the phase model, Eq. (12).
Solid lines show stable solutions, and dashed lines show unstable solutions. The delay is given in multiples of the uncoupled period T , and
the collective frequency 
 is given in multiples of the uncoupled frequency ω = 2π/T . Solid lines indicate stable solutions, and dashed lines
indicate unstable solutions. The parameters for the chemical event chain model are given in Table I. The parameters for the phase model are
adopted from the chemical event chain model with ω ≈ 0.224 estimated via Eq. (15) and ε = rβ with r = 1.33 × 10−4.

multiples of T/4, where T is the uncoupled period, as al-
ready observed earlier, compare to Figs. 5(d)–5(f). This is
expected because of stochastic switching between in-phase and
antiphase synchrony with different frequencies, see Sec. III D.
Moreover, as the signaling delay τ increases, the dominant
frequency components approach the intrinsic frequency of the
uncoupled oscillator, a behavior that the phase model captures
as described in the previous section and Fig. 8(a). Interestingly,
the phase model exhibits regions in which the in-phase and
antiphase solution are simultaneously stable. This implies that
sufficiently strong fluctuations can drive the system out of one
synchronized state into the basin of attraction of the other,
consistent with the stochastic switching between in-phase and
antiphase synchrony found in the chemical event chain model.
To obtain a proxy for the size of the basins of attraction of the
two states in the phase oscillator model, we numerically solve
the deterministic Eq. (11) with a constant phase difference
�φ between the two oscillators as an initial history, (φ1 −
φ2)|t�0 = �φ, and monitor their long-time phase difference
to determine their final state [60]. The region plots in Fig. 8
display these the final states depending on �φ and illustrate
how the relative size of such basins change as the mean
signaling delay τ is varied.

V. DISCUSSION

Considering two coupled genetic oscillators, we have shown
how stochastic coupling by signaling chains affects their

frequency and quality and promotes synchronization. An im-
portant feature of the chemical event chain framework is that it
naturally accounts for distributed signaling and transcriptional
delays that are a consequence of the sequences of chemi-
cal steps. These distributed signaling delays have profound
consequences for oscillator dynamics and fluctuations that
cannot be captured by simplified descriptions such as rate
equations or coupled oscillators with a discrete time delay. In
particular, we found that synchrony and quality are maximized
in isolated islands in parameter space characterizing coupling
delay and coupling strength. Moreover, noisy coupling can
lead to stochastic switching between in-phase and antiphase
states, a behavior also found in other coupled noisy oscillators,
e.g., Hodgkin-Huxley neurons [61] and delay-coupled phase
oscillators [62]. Our findings may shed light on the operating
regime of cellular genetic oscillator systems in which precise
timing is vital, such as the circadian clock [10] and the
vertebrate segmentation clock [19]. The Delta-Notch signaling
pathway may provide an experimental system where in-phase
and antiphase oscillations have been observed in the context of
the segmentation clock and neurogenesis, respectively [17,44].
Stochastic mode switching could be explored in this system
using synthetic approaches [63] and optogenetic perturbations
[47]. Here we have chosen intercellular coupling as an ex-
ample, but coupled genetic oscillators also occur within cells
[64] or, on a coarse-grained level, as coupled subpopulations
of oscillators, such as different regions of the mammalian
circadian clock [65,66], for which our modeling framework can
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be adapted as well. Moreover, using a unidirectional signaling
mechanism, effects of stochastic signaling on entrainment to
external signals can be studied, an aspect relevant for circadian
clock research [14,48,67].

Key effects of distributed signaling delays that result from
chemical chains can be captured by an effective phase oscillator
model. This phase model can also be extended to include noise
which enables us to study precision of collective oscillations
in a simplified picture.

Our results demonstrate the interplay of stochasticity and
nonlinear effects in genetic regulatory networks containing
chemical event chains. It extends existing approaches to
represent fluctuations in biochemical systems and captures the
statistics of nonequilibrium noise that arises in such chemical
processes. This approach is not limited to oscillatory systems
investigated here but can also be applied to other genetic
feedback systems such as homeostatic systems, switches, and
feed-forward cascades.
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APPENDIX A: STOCHASTIC SIMULATIONS

Direct numerical solutions of the master equation, Eq. (1), is
impracticable due to the high dimensionality of the state space.
Instead, a stochastic simulation algorithm of the Gillespie type
has been used to compute exact realizations of trajectories
of the model [68]. Expectation values were obtained by
computing averages of the respective observable over multiple
realizations. The data shown in Figs. 5 and 6 were obtained by
averaging over 50 realizations of duration 80 000 units of time
for each data point.

APPENDIX B: WAVELET TRANSFORM

The continuous wavelet transform of a discrete time series
(x1, . . . ,xm) sampled with time interval δt is defined by [69]

W (s,k) = 1√
s

m∑
j=1

xj�
∗
(

j − k

s

)
, (B1)

where s is the wavelet scale. We here choose the Gabor
wavelet function, given by �(t) = π−1/4e6it−t2/2. For the
Gabor wavelet, the scale s corresponds to a period of T (s) ≈
1.033sδt . The wavelet scalogram in Fig. 7(c) displays the
squared magnitude |W (s,k)|2 as a density plot, where the
abscissa shows time t = kδt and the ordinate shows the period
T = T (s).

APPENDIX C: STABILITY ANALYSIS OF THE
SYNCHRONIZED STATE IN THE PHASE MODEL

To assess the stability of the in-phase synchronized state
φμ(t) = 
t , we linearize the dynamics around this state [70].
We use the standard ansatz φμ(t) = 
t + ξμ(t) in Eq. (11),
where ξμ is a small perturbation. We obtain the time evolution
of the perturbation by expanding Eq. (11) to first order in ξ ,
which yields

1

ε

dξμ

dt
=

∫ ∞

0
g(s) cos(
s)[ξ (s)

μ̄ − ξμ] ds, (C1)

where μ̄ refers to the respective other oscillator as in Eq. (1) and
where we have defined the delayed variable ξ (s)

μ (t) = ξμ(t − s).
We decouple the dynamics by defining the collective modes
ϕk = ξ1 + kξ2 with k = +1, − 1. Inverting this definition
yields ξ1 = (ϕ+ + ϕ−)/2 and ξ2 = (ϕ+ − ϕ−)/2, which shows
that exciting the collective mode ϕ+ shifts both oscillators by
the same amount and thus corresponds to a global phase shift,
whereas ϕ− is the phase difference between both oscillators.
The dynamics of these collective modes are given by

1

ε

dϕk

dt
=

∫ ∞

0
g(s) cos(
s)[kϕ

(s)
k − ϕk] ds. (C2)

The characteristic equation for these modes is obtained using
the exponential ansatz ϕk(t) = eηkt with ηk being complex.
The sign of Re ηk then determines whether perturbations
decay (Re ηk < 0) or grow (Re ηk > 0) and thus whether the
synchronized state is stable or unstable [71]. Using this ansatz
in Eq. (C2), we obtain

ηk

ε
=

∫ ∞

0
g(s) cos(
s)(ke−ηks − 1) ds. (C3)

Since the Gamma distribution g, Eq. (3), decays as e−λs , the
integral on the right-hand side of Eq. (C3) is only well defined if
Re ηk > −λ. In this case, the integral can be solved analytically
and the resulting characteristic equation is

k�(ηk) − ηk/ε = �(0), (C4)

where

�(η) = λn

2

[
1

(λ + η + i
)n
+ 1

(λ + η − i
)n

]
. (C5)

In general, Eq. (C4) can have multiple solutions in ηk . The
synchronized state is linearly stable if and only if Re ηk < 0
holds for all solutions ηk to Eq. (C3) for both k = +1 and
k = −1. The stability of the antiphase synchronized state is
determined by Eq. (C4) with ε replaced by −ε. For Figs. 8 and
9, we determine the stability of a given synchronized state by
solving Eq. (C4) numerically and determining the sign of the
solution with the largest real part.
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