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We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework
for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics
of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on
a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational
symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production
in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending
modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active
terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape
instabilities that are related to active processes in the surface.
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Biological systems exhibit a stunning variety of complex
morphologies and shapes. Organisms form from a fertilized
egg in a dynamic process called morphogenesis. Such shape
forming processes in biology involve active mechanical events
during which surfaces undergo shape changes that are driven
by active stresses and torques generated in the material. Impor-
tant examples are two-dimensional tissues, so called epithelia.
They represent surfaces that can deform their shape as a result
of active cellular processes [1]. Cells also exhibit a variety of
different shapes and can undergo active shape changes. For
example, during cell division, cells round up to a spherical
shape due to an increase of active surface tension [2]. Cell
shapes are governed by the cell cortex, a thin layer of an active
contractile material at the surface of the cell [3]. Epithelial
tissues and the cell surface are examples of active surfaces.
In addition, recent experiments have reconstituted thin shells
of active material in vitro [4]. These are thin sheets of active
matter that can deform due to the generation of internal forces
and torques that are balanced by external forces [Fig. 1(a)].

The theory of active gels describes the large-scale properties
of viscoelastic matter driven out of equilibrium due to a
source of chemical free energy in the system [5]. A number of
processes in living systems have been successfully described
using this theoretical framework [6]. Living or artificial active
systems often assemble into nearly two-dimensional surfaces.
To understand the physics of such active surfaces requires a
systematic analysis of force and torque balances in curved two-
dimensional geometries, taking into account active stresses and
material properties. The shapes of passive fluid membranes
have been described with considerable success by the Helfrich
free energy, a coarse-grained description of membranes with
an expansion of the free energy in powers of the curvature
tensor [7]. Expressions for the stress and torque tensors within
a Helfrich membrane have been obtained. The associated
force and torque balance equations are equivalent to shape

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

equations for minimal energy shapes [8,9]. Active membrane
theories have expanded the description of passive membranes
to include external forces induced by pumps contained in a
membrane [10–12].

The morphogenesis of epithelial tissues is a highly complex
problem involving forces generated actively within the cells.
Distribution of forces acting along the cross section of a
sheetlike tissue give rise to in-plane tensions, but also to
internal torques resulting from differential stresses acting
along the cross section of the tissue [Fig. 1(b)]. These
differential stresses are crucial to generate tissue shape changes
[13]. However, no framework currently allows to describe the
mechanics of active thin surfaces with internal stresses and
torque densities.

In this work, we present such a general framework for
the mechanics of active surfaces, driven internally out of
equilibrium by molecular processes such as a chemical
reaction. We start by considering forces and torques generated
in a surface of arbitrary shape. The corresponding expression
for the virtual work shows that components of the tension and
torque tensors are coupled to the variation of the metric, of
the curvature tensors, and of the Christoffel symbols defined
for the surface [Eq. (15)]. Using these expressions, we then
derive the entropy production for a fluid surface undergoing
chemical reactions. We analyze the symmetries of surfaces
with rotational symmetry in the plane, and show that they
can have up-down, chiral, or planar-chiral broken symmetry.
We write the corresponding constitutive equations for the
components of the tension and torque tensors and for the fluxes
of the chemical species. Interestingly, the generic constitutive
equations involve couplings of the curvature tensor with the
chemical potential of the surface chemical species. We then
discuss the stability of a flat active fluid with broken up-down
symmetry. Finally, we show that generic equations for an active
elastic thin shell can be obtained using the same framework.

I. FORCE AND TORQUE BALANCE ON A
CURVED SURFACE

We consider a curved surface X(s1,s2) parametrized by two
generalized coordinates s1, s2 [Fig. 1(c)]. We use Latin indices
to refer to surface coordinates and Greek indices to refer to
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FIG. 1. (a) Filaments and motors near a surface and epithelial
tissues are examples of active surfaces. (b) The distribution of stresses
within a thin layer give rise to stresses and torques when integrated
across the thickness of the layer. (c) Local basis of tangent vectors
e1, e2 and normal vector n associated to the surface X(s1,s2). (d)
Internal and external forces and torques acting on a surface element
with surface area dS.

three-dimensional (3D) Euclidean coordinates. We introduce
the metric tensor gij = ei · ej where ei = ∂iX with ∂i = ∂/∂si .
The curvature tensor is defined as Cij = −(∂i∂j X) · n, where
n = e1 × e2/|e1 × e2| is the unit normal vector, which we
usually consider to point outward for a closed surface. We
denote dl with dl2 = gij dsidsj a line element on the surface,
and dS = √

gds1ds2 a surface element, where g = det gij is
the determinant of the metric tensor (Appendix A).

The force f and torque � across a line of length dl with
unit vector ν = νiei , tangential to the surface and normal to
the line, can be expressed as

f = dl νiti = dl νiti , (1)

� = dl νimi = dl νimi , (2)

where we have introduced the tension ti and moment mi per
unit length [Figs. 1(b) and 1(d)]. Decomposing ti and mi in
tangential and normal components as

ti = t ij ej + t inn, (3)

mi = mij ej + mi
nn (4)

defines the tension and moment per unit length tensors t ij , t in,
mij , and mi

n. For simplicity, here and in the following we do
not explicitly state if tensors are ordinary or pseudo tensors.

By expressing the total force acting on a region of surface
S with contour C and using Newton’s law, one finds∫

S
dS ρa =

∮
C
dl νiti +

∫
S

dS fext, (5)

where ρ is the surface mass density, a is the local center-
of-mass acceleration, fext is an external force surface density.

When the surface is embedded in a medium, the external force
surface density is related to stresses exerted by the medium
on the surface f ext

α = σβαnβ with σαβ the three-dimensional
stress tensor in the medium. The total torque obeys∫

S
dS[X × ρa] =

∮
C
dl νi[mi + X × ti]

+
∫
S

dS[�ext + X × fext], (6)

where �ext is the external torque surface density, and where
the left-hand side is the torque stemming from inertial forces.
Here, we ignore the moment of inertia tensor for simplicity.
This results in the force balance expression (Appendix C)

∇iti = −fext + ρa, (7)

∇imi = ti × ei − �ext. (8)

These equations can be expressed in terms of the components
of the tension and torque tensors:

∇i t
ij + Ci

j t in = −f ext,j + ρaj , (9)

∇i t
i
n − Cij t

ij = −f ext
n + ρan, (10)

∇im
ij + Ci

jmi
n = εi

j t in − 	ext,j , (11)

∇im
i
n − Cijm

ij = −εij t
ij − 	ext

n , (12)

where the tangential and normal components of a vector v on
the surface are written vi = v · ei and vn = v · n.

II. VIRTUAL WORK

We introduce the virtual work δW , which is the mechanical
work acting on a region of surface S enclosed by a con-
tour C, upon a small deformation δX of the surface, with
X′(s1,s2) = X(s1,s2) + δX(s1,s2). Here, δX(s1,s2) represents
a displacement of a material point on the surface specified by
(s1,s2). The virtual work can be defined as

δW =
∮
C
dl νi

[
ti · δX + 1

2
mi · (∇ × δX)

]

+
∫
S
dS

[
(fext−ρa) · δX+ 1

2
�ext · (∇ × δX)

]
, (13)

where S is the surface region enclosed by C, and we have
introduced the curl operator in Euclidian space [Eq. (A29)]:

(∇ × δX)α = εαβγ ei
β(∂iδXγ ) + εαβγ nβ(∂nδXγ ). (14)

In Eq. (14), we have introduced the normal derivative of the
surface deformation ∂nδX. We consider here ∂nδX = −(∂iδX ·
n)ei (Appendix B).

The terms in the expression of the virtual work (13) describe
the work due to forces and torques acting at the boundary C
as well as external forces and torques acting on the surface S.
Using force balance and the divergence theorem, the virtual
work can be reexpressed as (see Appendix D)

δW =
∫
S

dS

[
t
ij δgij

2
+ mi

j δCi
j + mi

n

εj
kδ	

k
ij

2

]
. (15)
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Here, the explicit expression of the metric variation δgij ,
curvature variation δCi

j , and variation of Christoffel symbols
δ	k

ij as a function of the surface variation δX are given in
Appendix B. We have introduced the in-plane tension and
bending moment tensors

t
ij = t ijs + 1

2

(
m̄kiCk

j + m̄kjCk
i
)
, (16)

mij = −mikεk
j , (17)

where the s subscript denotes the symmetric part of the tensor
[Eq. (A14)]. In Eq. (15), we have used a reference frame that
deforms with the material.

The virtual work given by Eq. (15) can be interpreted
physically as the mechanical work due to different types
of deformations. The in-plane surface stress tensor t̄ ij is
conjugate to the variation of the metric tensor δgij , describing
internal shear and area compression. The in-plane tension
tensor t ij introduced in Eq. (16) differs from the tension
tensor tij introduced in Eq. (3): this is because in a thin shell,
a deformation leading to a change of metric of the surface
midplane corresponds to a three-dimensional shear within the
shell. As a result, the work to deform the surface midplane
depends on the in-plane bending moment tensor, which reflects
the distribution of stresses across the thickness of the shell. The
in-plane tensor m̄i

j of bending moments is conjugate to the
variation of the curvature tensor δCi

j due to bending of the
surface. The normal torque mi

n is conjugate to gradients of
local rotations εj

kδ	
k
ij . The expression of the virtual work

(15) does not include shear perpendicular to the surface: this
would require the introduction of an additional variable.

The virtual work given in Eq. (15) is very general. In order
to evaluate the virtual work for a given surface deformation,
the values of the internal stresses characterized by the in-plane
stress tensor t

ij , the in-plane bending moment tensor mij , and
the normal torque mn, have to be known. In general, they are
provided by constitutive relations describing the properties of
the material associated with the surface.

We now discuss constitutive relations for active fluid and
elastic curved surfaces. The case of a passive membrane is
discussed in Appendix H.

III. CURVED ACTIVE FILM

We now use concepts for irreversible thermodynamics to
derive constitutive equations for a curved isotropic fluid. We
consider a fluid consisting of several species α = 1 . . . N with
concentrations cα . The local mass density is given by ρ =∑

α mαcα with mα the molecular mass of species α. The free
energy density in the rest frame is denoted f0(cα,Ci

j ,T ) where
Ci

j is the curvature tensor of the film in mixed coordinates,
and T the temperature. The differential of f0 is

df0 = μαdcα + Ki
jdCi

j − s dT , (18)

where μα is the chemical potential of component α, Ki
j is the

passive bending moment, and s the entropy density. The total
free energy density is

f = 1
2ρv2 + f0, (19)

FIG. 2. Free energy balance on a surface element in the isothermal
case. Free energy density is exchanged between the surface element
and the surrounding surface with a flux Jf , with the surrounding bulk
with flux J f

n , and is produced with rate −T π .

where the kinetic energy density is given by 1
2ρv2 =

1
2ρ[viv

i + (vn)2]. We denote μα
tot = df/dcα = μα + mαv2/2

the total chemical potential of the chemical species α.

A. Conservation equations

We start by deriving conservation equations for the surface
mass, concentration of chemical species, energy, entropy, and
free energy. Using a Eulerian representation (Appendix E),
mass balance reads as

∂tρ + ∇i(ρvi) + vnCi
iρ = J ρ

n , (20)

where J
ρ
n is a source term due to mass exchange with

the environment and v = viei + vnn is the center-of-mass
velocity.

The concentrations cα obey the balance equation

∂tc
α + ∇iJ

α,i + vnCi
icα = J α

n + rα, (21)

where J α,i = cαvi + jα,i is the tangential flux in the surface
of molecule α with jα,i the flux relative to the center of
mass, J α

n describes exchanges between the surface and its
surrounding environment, and rα denote source and sink
terms corresponding to chemical reactions in the surface. Mass
conservation implies the following relation between fluxes of
molecules and chemical rates:

∑
α

mαJ α
n = J ρ

n , (22)

∑
α

mαjα,i = 0, (23)

∑
α

mαrα = 0. (24)

In the remaining of this work, summation over α is implicit.
The conservation of energy and the balance of entropy and
free energy density have the form (Fig. 2)

∂te + ∇iJ
e,i + vnCi

ie = J e
n , (25)

∂t s + ∇iJ
s,i + vnCi

is = J s
n + π, (26)

∂tf + ∇iJ
f,i + vnCi

if = J f
n − T π − J i

s ∇iT − (∂tT )s,

(27)
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FIG. 3. Two Gibbs-Duhem relations for a fluid surface are
obtained by considering a rigid translation of the surface by a uniform
infinitesimal vector δa or a rigid rotation with infinitesimal vector δθ .
Coordinates on the new surface are obtained by following the normal
n of the original surface.

where e and s are the energy and entropy density, respectively,
J e

n and J s
n are energy and entropy fluxes entering the surface

from the adjacent bulk, J e,i and J s,i are tangential energy and
entropy fluxes within the surface, and J

f
n = J e

n − T J s
n and

J f,i = J e,i − T J s,i are the normal and tangential fluxes of
free energy. The entropy production rate within the surface is
denoted π . Equation (27) is obtained from the relation f =
e − T s and Eqs. (25) and (26). In the following, we consider
for simplicity the isothermal case.

B. Translation and rotation invariance

We now discuss relations between equilibrium tensions and
torques implied by invariance of the surface properties under
a rigid translation or rotation.

1. Gibbs-Duhem relation

Using translation invariance of the free energy, we can
derive a Gibbs-Duhem relation. We consider an infinitesimal
translation of the surface by a constant vector δa. The condition
∂iδa = 0 implies, using Eq. (A20),

∇iδa
j + Ci

j δan = 0, (28)

∂iδan − Cij δa
j = 0. (29)

During translation, we reparametrize the new surface such that
each point (s1,s2) moves normal to the original surface on the
new translated surface (Fig. 3). Translation invariance then
implies the relation (see Appendix F)

∇j

[
(f0 − μαcα)gi

j − KjkCik

] + Cik∇jK
jk = −cα∂iμ

α.

(30)

Equation (30) is a covariant generalization for surfaces of the
Gibbs-Duhem relation for a three-dimensional multicompo-
nent fluid [14,15], with an additional term arising from the
passive bending moment tensor.

2. Rotation invariance

We can derive a generalized Gibbs-Duhem relation describ-
ing torque balances using infinitesimal rotation described by
the pseudovector δθ , such that the surface is deformed as

δXα = εαβγ δθβXγ . (31)

The deformation defines a new surface X′ = X + δX, which is
reparametrized such that (s1,s2) is constant along the normal

to the original surface. Rotation invariance then implies (see
Appendix F)

Kij εjkCi
k = 0, (32)

implying that the tensor KijCi
k is symmetric.

3. Equilibrium tensions and torques

The equilibrium tension and bending moment tensors can
be obtained by calculating the change of free energy under
a surface deformation and using the expression of the virtual
work (15) (Appendix H). The equilibrium tension and bending
moments are given by

t̄ ije = (f0 − μαcα)gij , (33)

m̄ij
e = Kij , (34)

mi
n,e = 0. (35)

Using Eqs. (16) and (17), one also obtains the symmetric
part of the equilibrium tension tensor t

ij
e,s = (f0 − μαcα)gij −

(Kk
iCkj + Kk

jCki)/2 and the bending moment tensor m
ij
e =

Kikεk
j . Note that the surface tension can be defined by γ =

ti
i/2 = f0 − μαcα − KijC

ij /2. Using the tangential torque
balance equation (11) then yields the equilibrium tension t ie,n =
∇jK

ji − εj
i	ext,j . Using Eqs. (32) and (35), the normal torque

balance equation (12) yields the equilibrium antisymmetric
part of the stress εij t

ij = −	ext
n .

Combining the Gibbs-Duhem relation (30) and the tan-
gential force balance given by Eq. (9), taking into account
the symmetry relation (32), leads to the equilibrium condition
relating chemical equilibrium gradients to external forces:

cα∂jμ
α = f ext

j − 1
2εi

j

(
∂i	

ext
n

) − Cij εk
i	ext,k

= −cα[∂jU
α + Cij (∂Uα/∂n) · ei]. (36)

In the second line, the external force and torque surface densi-
ties derive from a potential Uα(s1,s2,n) acting on component
α [Eqs. (H10) and (H11)]. Equation (36) shows that one can
then introduce the effective chemical potential μα

eff(s
1,s2) =

μα(s1,s2) + Uα(s1,s2,n(s1,s2)), for which cα∂iμ
α
eff = 0.

The remaining normal force balance equation (10) then
provides a shape equation for the equilibrium surface shape.

C. Entropy production rate

We can now calculate the entropy production rate using
the variation of the free energy and the Gibbs-Duhem relation
derived above. We consider a region of surface S enclosed
by a fixed contour C, which can deform in three dimensions.
The rate of change of the free energy F can be written as (see
Appendix I)

dF

dt
=

∫
S

dS

[
− (

t
ij − t

ij

e

)
vij − (m̄ij − Kij )

DCij

Dt

−mi
n(∂iωn − Cijω

j ) + (∂iμ
α)jα,i + μαrα

+μα
totJ

α
n + fext · v + �ext · ω

]

+
∫
C
dl νi[−f vi − μαjα,i + ti · v + mi · ω], (37)
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where we have introduced the symmetric in-plane shear tensor
vij , the curl of the flow ω = ωiei + ωnn, and the corotational
derivative of the curvature tensor:

vij = 1
2 (∇ivj + ∇j vi) + Cijvn, (38)

ω = εij (∂jvn − Cjkv
k)ei + 1

2εij (∇ivj )n, (39)

DCij

Dt
= −∇i(∂jvn) − vnCikC

k
j + vk∇kCij

+ωn

(
εi

kCkj + εj
kCki

)
. (40)

Note that the in-plane shear tensor vij is the sum of a
contribution from in-plane flows, equal to the symmetric part
of the covariant gradient of flow ∇ivj , and a contribution
arising from normal flows vn, corresponding to in-plane shear
induced by the deformation of the surface in three dimensions.
The vorticity ω of the flow has a normal part arising from
the two-dimensional vorticity of the flow εij∇ivj /2, and a
tangential part specific to curved surfaces. The bending rate
tensor DCij/Dt has the form of a corotational derivative,
with the third term in Eq. (40) corresponding to advection
of the curvature, and the last two terms to a corotational
term. In Eq. (37), we have not included contributions from
the antisymmetric part of m̄ij . Note that the bending moment
tensor can always be chosen to be symmetric in the force
balance equations (see Appendix I).

We can read off the entropy production rate in the surface
per unit area from Eq. (37):

T π = t
ij

d vij + m̄
ij

d

DCij

Dt
+ mi

n(∂iωn − Cijω
j )

− (∂iμ
α)jα,i − μαrα, (41)

where t
ij

d = t̄ ij − t̄ eij and m̄
ij

d = m̄ij − Kij are the deviatoric
parts of the in-plane stress and bending moment tensor. The
mechanical contribution to dissipation can be also understood
starting from Eq. (15) using T πm = δWd/δt , where δWd is
the work done by dissipative forces, together with Eqs. (E6)–
(E8). The entropy production rate is a sum of products of
conjugate thermodynamic fluxes and forces, which all vanish
at thermodynamic equilibrium. The pairs of conjugate fluxes
and forces are listed in Table I. Because of the balance
equations (23) and (24), the N fluxes jα,i and rates rα

are not independent and the current and source rate of one
molecular species can be expressed as a function of the
others.

We now briefly discuss the conjugate fluxes and forces.
The deviatoric in-plane tension tensor t

ij

d is conjugate to

TABLE I. List of pairs of conjugate thermodynamics fluxes and
forces in a thin active surface.

Flux Force

In-plane shear tensor vij In-plane tension tensor t̄
ij

d

Bending rate tensor
DCij

Dt
In-plane bending moment tensor m̄

ij

d

Vorticity gradient (∂iω) · n Normal moment mi
n

Diffusion flux j i,α Chemical potential gradient −∂iμ
α

Chemical reaction rate −rα Chemical potential μα

the in-plane shear rate vij , corresponding to the dissipative
cost of introducing in-plane deformations in the surface. The
coupling between the deviatoric in-plane bending moment
m

ij

d and the bending rate tensor DCij/Dt arises only for
curved surfaces and is associated to the dissipative cost of
changing the surface shape in three dimensions. The coupling
between the normal moment mi

n and the vorticity gradient of
flow (∂iω) · n = ∂iωn − Cijω

j is a generalization to curved
surfaces of a coupling which also arises for planar surfaces,
and is associated to the dissipative cost of gradients of rotations
within the surface [16]. Finally, the two last terms in Eq. (41)
correspond to couplings of the chemical potential and its
gradient to the rates of reactions and the flux of diffusion
of species in the surface [15].

The flux of free energy entering the surface from the
adjacent bulk reads as

J f
n = fext · v + �ext · ω + μα

totJ
α
n , (42)

which corresponds to the sum of the mechanical power acting
on the surface and of the influx of chemical energy in the
surface. The flux of free energy tangential to the surface reads
as

J f,i = f vi − ti · v − mi · ω + μαjα,i , (43)

where f vi is the advection of free energy, μαjα,i is the flux
of chemical free energy, and the remaining terms describe the
mechanical power tangential to the surface at its boundaries.

D. Mirror and rotation symmetries of surfaces

Constitutive relations describing the active surface must
respect the symmetries satisfied by the surface [17]. We
therefore classify surfaces by asking whether the state of
an element of surface is preserved under application of
symmetries (Fig. 4).

We restrict ourselves to surfaces with rotation symmetry in
the plane. We then find that three sets of discrete symmetries
can be associated to thin shells: up-down mirror symmetry
Mn, mirror symmetry with respect to a plane normal to the
surface Mt , and up-down rotation symmetry Rt [Fig. 4(a)].
Mt corresponds to a mirror symmetry by a normal plane
going along an arbitrary tangent vector t, Rt to a rotation of
π around an arbitrary tangent vector t. The corresponding
transformations rules are given in Appendix G. Because
inversion of space can be written as the combination of Mn

and the rotation of π around the normal Rn, inversion of space
and Mn are broken or preserved simultaneously for a surface
with in-plane rotation symmetry. Furthermore, combination of
two of the symmetries Mn, Mt , and Rt yields the third one,
such that at least two of these symmetries must be broken. As
a result, surfaces can be classified into five different classes: (i)
up-down symmetric, nonchiral surfaces (type 0) preserve all
three symmetries, (ii) nonchiral surfaces with broken up-down
symmetry (type UD) preserve Mt but break Mn and Rt , (iii)
chiral surfaces with up-down rotation symmetry break all
mirror symmetries Mt and Mn but preserve Rt (type C), (iv)
planar-chiral surfaces preserve up-down mirror symmetry Mn

but break Mt and Rt (type PC), (v) up-down asymmetric
and chiral surfaces break Mn, Mt and Rt (Fig. 4). Note
that we choose to denote surfaces breaking Mt and not Mn
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(i) Up-down symmetric,

 non chiral surfaces

(ii) Surfaces with broken

 up-down symmetry

(iii) Chiral surfaces preserving up-down rotation symmetry 

(iv) Planar-chiral surfaces with broken planar mirror symmetry ,

preserving up-down mirror symmetry

(v) Surfaces with broken chiral and up-down symmetry

Up-down mirror symmetry

Up-down rotation symmetry

Normal plane mirror symmetry

Symmetry with respect to

rotation of pi around the normal

(a)

(b)
(O) (UD)

(C)

(PC)

FIG. 4. Classification of surfaces with in-plane rotation sym-
metry. (a) The surface state can change under up-down mirror
symmetry Mn, mirror symmetry Mt , up-down rotation symmetry
Rt , and rotation by π around the normal Rn. The symmetry Rn is not
broken for a surface with in-plane rotation symmetry. (b) Surfaces
with in-plane rotation symmetry can be categorized in five classes
according to their symmetries. Schematics give examples of actual
surfaces belonging to each category. Red and green letters indicate,
respectively, broken and preserved symmetries.

planar-chiral surfaces because they break mirror symmetry
with respect to a plane perpendicular to the surface, but
these surfaces are not necessarily made of chiral molecules
[Fig. 4(b)].

E. Constitutive and hydrodynamic equations

Using the conjugate thermodynamic forces and fluxes
obtained from Eq. (41) and listed in Table I, we write a generic
linear response theory taking into account the symmetries
of an active fluid surface. For simplicity, we consider that a
single chemical reaction occurs in the surface converting a
fuel species F into a product species P . The fuel and product
species have the same mass, and we neglect here for simplicity
reaction rates and fluxes relative to the center of mass of
other components. We denote �μ = μF − μP the difference
of chemical potential between the field and product species,
r = −rF = rP the rate of fuel consumption and j = jF = −jP

its flux, where we have used Eqs. (23) and (24). We also assume
that no chemical exchange exists between the membrane and
its surrounding, such that the normal fluxes J α

n and J
ρ
n vanish.

In the linear response theory, we expand the tensors t̄
ij

d , m̄
ij

d ,
mi

n, diffusion flux j i,α , and chemical reaction rate rα to linear
order in the rates of deformation vij , DCi

j/Dt , (∂iω) · n,
chemical potential gradient ∂i�μ, and chemical potential �μ.

The stress and moment tensors can then be decomposed as

t
ij

d = t
ij

0 + t
ij

UD + t
ij

C + t
ij

PC,

m
ij

d = m
ij

0 + m
ij

UD + m
ij

C + m
ij

PC, (44)

mi
n = mi

n0 + mi
nUD + mi

nC + mi
nPC,

where t
ij

0 is the part of the stress tensor that exists for any
surface, t

ij

UD correspond to terms present when the surface
breaks up-down symmetry, t

ij

C exist for chiral surfaces, and
t
ij

PC for planar-chiral surfaces. Similar rules apply for the
decomposition of the bending moment tensor and normal
moment tensor.

To express constitutive equations for each of the compo-
nents, we then write all possible terms of the expansion of
the generalized forces in the fluxes at linear order, and ask
whether the corresponding terms break the symmetry Mn,
Mt , Rt according to the signatures given in Appendix G. We
consider here an active surface close to equilibrium and use
the Onsager symmetry relations [18]. The contributions to the
deviatoric part of the tension tensor then read as

t
ij

0 = 2ηṽij + ηbvk
kgij + ζgij�μ,

t
ij

UD = 2η̄
DC̃ij

Dt
+ η̄b

DCk
k

Dt
gij + 2ζ̃ C̃ij�μ + ζ ′Ck

kgij�μ,

t
ij

C = ηC

(
εik DCk

j

Dt
+εjk DCk

i

Dt

)
+ ζC(εi

kC
kj + εj

kC
ki)�μ,

t
ij

PC = ηPC(εi
kv

kj + εj
kv

ki), (45)

where we have introduced the notation Ãij = Aij − 1
2Ak

kgij

for the traceless part of a tensor A. The deviatoric part of the
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moment tensor reads as

m
ij

0 = 2ηc

DC̃ij

Dt
+ηcb

DCk
k

Dt
gij + 2ζ̃cC̃

ij�μ+ ζ ′
cCk

kgij�μ,

m
ij

UD = 2η̄ṽij + η̄bvk
kgij + ζcg

ij�μ,

m
ij

C = −ηC(εi
kv

kj + εj
kv

ki),

m
ij

PC = ηcPC

(
εik DCk

j

Dt
+ εjk DCk

i

Dt

)

+ ζPC(εi
kC

kj + εj
kC

ki)�μ. (46)

In Eq. (46), we have only introduced symmetric contributions
to the bending moment tensor. The normal moment reads as

mi
n0 = λ(∂iωn − Cijωj ) + χεij ∂j�μ

mi
nUD = (χ̄1ε

i
kC

kj + χ̄2C
i
kε

kj )∂j�μ

mi
nC = χCCij ∂j�μ + χ ′

CCk
k∂i�μ

mi
nPC = λPCεij (∂jωn − Cjkω

k) + χPC∂i�μ. (47)

The rate of fuel consumption then reads as

r = −(
ζ + ζ ′Ck

k
)
vk

k − 2ζ̃ C̃ij ṽij − 2ζCεi
kC

kjvij

− (
ζc + ζ ′

cCk
k
)DCk

k

Dt
− 2ζ̃cC̃

ij DC̃ij

Dt

− 2ζPCεi
kC

kj DCij

Dt
+ ��μ (48)

and the fuel flux relative to the center of mass is given by

j i = −L∂i�μ + LPCεij ∂j�μ + (−χεij + χCCij

−χ̄2ε
i
kC

kj − χ̄1C
i
kε

kj + (χPC + χ ′
CCk

k)gij
)

× (∂jωn − Cjkω
k). (49)

η, ηb, η̄, η̄b, ηc, ηcb, ηC, λ, �, and L are dissipative couplings, ζ ,
ζ ′, ζ̃ , ζc, ζ̃c, ζ ′

c, ζC, ζPC, χ , χ̄1, χ̄2, χC, χ ′
C, and χPC are reactive

couplings. The viscosities depend in general on the curvature
tensor Cij ; here we have not taken this dependency into
account for simplicity. We have introduced terms proportionals
to ηPC, ηcPC, λPC, and LPC corresponding to odd or Hall
viscosities which do not contribute to dissipation. These are
reactive coefficients, and the time signatures of the constitutive
equations imply that they change sign under time reversal,
which could exist for example in the presence of a magnetic
field [19]. Active tensions and bending moments proportional
to the difference of chemical potential �μ depend on the
curvature tensor. In the constitutive equations (45)–(49), we
have expanded these terms to first order in the curvature tensor
Cij . Although we have not written explicitly this dependency
here, the phenomenological coefficients also depend in general
in the concentration fields cα . Positivity of entropy productions
implies that the viscosities η, ηb, ηc, ηcb, and λ are positive,
however, the up-down asymmetric viscosities η̄, η̄b and chiral
viscosity ηC can be positive or negative.

In the equations above, the contribution to the two-
dimensional stress t̄

ij

0 is the generalization for curved surfaces
of the generic hydrodynamic equations of a three-dimensional
active gel [5]: η and ηb are, respectively, the planar shear
and bulk viscosity of the surface, and ζ�μ is an active tension
arising in the surface from active processes. Additional viscous

tensions proportional to η̄, η̄b, and ηC arise for a curved surface
due to the dissipative cost of changing the surface curvature.
We also find new active terms for the tension tensor of a curved
surface proportional to ζ̃ , ζ ′, ζC , that depend on the curvature
tensor Cij . In particular, anisotropic active stresses can arise in
a curved surface isotropic in the plane, due to the anisotropy
of the curvature.

Active terms for the moment tensor introduced in Eq. (46)
are specific to thin films and correspond to actively induced
torques in the film. The active torque ζc, arising in a surface
with broken up-down symmetry, can induce active bending of
a flat surface. Combining the constitutive equations (45)–(49),
the force and torque balance equations (7) and (8), and the
concentration balance equations (21) yield dynamic equations
for the surface shape, the velocity field on the surface v, and the
concentration fields on the surface cα . While the constitutive
equations obtained here are linear in the fluxes, the dynamics
equations for the surface shape are in general nonlinear due to
geometric couplings.

F. Instabilities of a homogeneous active Helfrich membrane

In this section, we restrict ourselves to nonchiral surfaces
with broken up-down symmetry and discuss low Reynolds
numbers where inertial terms can be neglected. Starting from
a description of a passive surface with the Helfrich free energy,
we consider effects introduced by additional active terms.

1. General equations

A passive fluid membrane described by the Helfrich energy
with membrane tension γH , bending modulus κ , Gaussian
bending modulus κg , and spontaneous curvature C0 has the
equilibrium tension and bending moment tensor (Appendix H)

t̄ij =
[
γH +

(
κ + κg

2

)(
Ck

k
)2 − κCk

kC0 − κg

2
Cl

kCk
l

]
gij ,

(50)

m̄i
j = [

(κ + κg)Ck
k − κC0

]
gi

j − κgCi
j . (51)

Starting from such a passive fluid membrane, the constitutive
relation for the tension and bending moment tensor of an active
surface reads as, neglecting viscous terms for this discussion
and keeping terms only to first order in the curvature,

t
ij � [

γH + ζ�μ + (−κC0 + ζ ′�μ)Ck
k
]
gij + 2ζ̃�μC̃ij ,

(52)

m̄ij � {
[κ + κg + (ζ ′

c − ζ̃c)�μ]Ck
k + (ζc�μ − κC0)

}
gij

− (κg − 2ζ̃c�μ)Cij . (53)

Introducing a surface tension renormalized by activity γ̄ =
γH + ζ�μ, and similarly the renormalized bending mod-
uli κ̄g = κg − 2ζ̃c�μ, κ̄ = κ + (ζ̃c + ζ ′

c)�μ and spontaneous
curvature C̄0 = κC0/κ̄ − ζc�μ/κ̄ , one obtains

t
ij = {

γ̄ + [−κ̄C̄0 + (ζ ′ − ζc)�μ]Ck
k
}
gij + 2ζ̃�μC̃ij ,

(54)

m̄ij = [
(κ̄ + κ̄g)Ck

k − κ̄C̄0
]
gij − κ̄gC

ij . (55)
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Active 

buckling 

instability

Tension-curvature  coupling

 instability

FIG. 5. Phase diagram for the stability of a flat active Helfrich
membrane with up-down asymmetry, as a function of the active
tension ζ�μ and the active tension-curvature coupling term (ζ ′ +
ζ̃ − ζc)�μ, for η̄ > 0. For simplicity, we consider here the case
ζ̃c = ζ ′

c = 0 and ηb = η̄b = ηcb = 0.

Two active terms proportional to �μ remain in the constitutive
equation (54). Active terms therefore do not simply renormal-
ize the physical parameters of the Helfrich membrane, but
introduce other physical effects. To clarify the role of these
terms, we discuss below the instabilities of a flat active Helfrich
membrane.

2. Instabilities of a flat surface

We consider here a flat, homogeneous, and compressible
membrane. We ignore here the surrounding medium and the
membrane is therefore free from external forces and torques.
Perturbations of the flat shape are described in the Monge
gauge by the height h(x,y), such that the surface position
is given by X(x,y) = xux + yuy + h(x,y)uz. We take here
for simplicity the bulk viscosities ηb = η̄b = ηcb = 0 and we
obtain the shape equation (Appendix J)

q4

[(
ηc− η̄2

η

)
∂t + κ + (ζ̃c + ζ ′

c)�μ + η̄(ζc−ζ ′−ζ̃ )�μ

η

]
h̃

+ q2(γH + ζ�μ)h̃ = 0, (56)

where we have introduced the Fourier transform of the
height h̃(qx,qy) = 1

2π

∫
dx dy h(x,y)e−i(qxx+qyy), and q =√

q2
x + q2

y . The second law of thermodynamics imposes that
ηcη > η̄2. We find that the active flat surface undergoes shape
instabilities for (Fig. 5)

ζ�μ < −γH , (57)

η̄(ζ ′ + ζ̃ − ζc)�μ

η
> κ + (ζ̃c + ζ ′

c)�μ. (58)

The first condition corresponds to the classical buckling
instability occurring when active stresses are compressive and
establish a negative surface tension γ̄ = γH + ζ�μ < 0 in
the membrane.

In the second condition, the instability is favored by
negative values of ζ̃c + ζ ′

c or positive values of η̄(ζ ′ + ζ̃ − ζc).

Negative values of ζ̃c + ζ ′
c lower the effective bending modulus

κ̄ . Positive values of η̄(ζ ′ + ζ̃ − ζc) induce an instability cou-
pling the membrane shape to tangential flows. This instability
can be understood from the dependency of the tension on
curvature [Eqs. (16) and (45)]. Because of this dependency, a
perturbation of the surface shape results in regions of low and
high surface tension, depending on the sign of the local mean
curvature and the sign of the coefficient ζ ′ + ζ̃ − ζc which
couples the tension tensor to the curvature tensor. Differences
of surface tensions result in flows towards region of higher
surface tension. These flows generate further in-plane torques
when the surface has a nonzero up-down asymmetric viscosity
η̄ or η̄b. A shape instability occurs when the sign of this
additional torque leads to further deformation of the surface.

IV. ACTIVE ELASTIC THIN SHELL

In addition to fluid surfaces, the formalism presented here
can also be used for elastic surfaces. We discuss here isotropic
active elastic thin shells.

A. Hookean elasticity

We first write generic constitutive equations for a Hookean
elastic shell. Rather than inferring tensions and moment
tensors from three-dimensional stresses, we directly obtain
generic two-dimensional constitutive equations [20,21]. We
consider a surface with reference shape X0 and a deformation
field u, such that the deformed surface has position X =
X0 + u. In the following, the subscript 0 refers to quantities
associated to the reference surface. Using the differential
virtual work expression (15), the change of virtual work
induced by a change in the deformation field u reads as, to
first order in the deformation field,

δW �
∫
S

dS
[
t̄ ij δuij + m̄ij δcij + mi

nδ�i

]
, (59)

where we have introduced the deformation tensors
uij = �gij /2, cij = (g0ik�Cj

k + g0jk�Ci
k)/2, and �i =

ε0
j
k�	k

ij /2, with �gij = gij − g0ij , �Ci
j = Ci

j − C0i
j ,

�	k
ij = 	k

ij − 	k
0ij , and we have assumed as for the fluid case

that m̄ij can be taken to be symmetric. The deformation tensors
read as, to first order in the deformation field,

uij = 1
2 (∇iuj + ∇jui) + C0ij u

n, (60)

cij = −∇i(∂jun) − unC0ikC0
k
j + (∇kC0ij )uk

+ 1
2ε0kl(∇kul)

(
ε0i

kC0kj + ε0j
kC0ki

)
, (61)

�i = 1
2∇i(ε0

j
k∇ju

k) − C0ij ε0
jk(∂kun − C0klu

l), (62)

where we have used Eqs. (B13), (B17), and (D10), the
covariant derivatives are taken on the undeformed surface,
and the components of the deformation tensor are projected
on the basis of the reference surface. We can then identify that
the in-plane stress t̄ij , in-plane bending moments m̄ij , and
normal moments mn are conjugate to the deformation tensor
uij , cij , and �i . We can therefore express Hookean elasticity
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by the following constitutive relations:

t̄ eij = Eijklu
kl + Gijklc

kl, (63)

m̄e
ij = Kijklu

kl + Fijklc
kl, (64)

mi
n = Hij�j , (65)

where we have introduced the Hookean elastic moduli
tensors E, F , G, K , and H . For a shell in thermodynamic
equilibrium with free energy density on the reference surface
f , Eijkl = ∂2f/∂ukl∂uij = ∂2f/∂uij ∂ukl=Eklij , F ijkl=∂2f/

∂ckl∂cij = ∂2f/∂cij ∂ckl =Fklij , Gijkl = ∂2f/∂ckl∂uij = ∂2f/

∂uij ∂ckl = Kklij , and Hij = ∂2f/∂�i∂�j = ∂2f/∂�j∂�i =
Hji . On a homogeneous elastic shell, the metric, curvature,
and Levi-Civita tensors can be used to define these elasticity
tensors. We therefore simplify the general relations above in
the form

t
ij

0 = E1u
ij + E2uk

kg0
ij

t
ij

UD = G1c
ij + G2ck

kg0
ij

(66)
t
ij

C = GC
[
ε0

i
kc

kj + ε0
j
kc

ki
]

t
ij

PC = EPC
[
ε0

i
ku

kj + ε0
j
ku

ki
]
,

m
ij

0 = F1c
ij + F2ck

kg0
ij

m
ij

UD = K1u
ij + K2uk

kg0
ij

(67)
m

ij

C = −KC
[
ε0

i
ku

kj + ε0
j
ku

ki
]

m
ij

PC = FPC
[
ε0

i
kc

kj + ε0
j
kc

ki
]
,

mi
n0 = H1�

i

mi
nUD = H̄1C

ij

0 �j + H̄2C0k
k�i

(68)
mi

nC = HCε0
i
kC

kj

0 �j + H̄Cε0jkC
ki
0 �j

mi
nPC = HPCε0

ij�j ,

where we have decomposed the tension and bending moment
tensors according to the symmetry class of the shell, as
in the fluid case [Eq. (44)]. The coefficients Ek , Fk , Gk ,
Kk , and Hk are elastic moduli, and we have written all
terms allowed by symmetry for a homogeneous isotropic
elastic material, at lowest order in the curvature tensor of the
reference surface C

ij

0 . For an elastic shell at thermodynamic
equilibrium, G1 = K1, G2 = K2, GC = KC, HC = H̄C, as a
result of the tensor symmetries Gijkl = Kklij and Hij = Hji

[see after Eq. (65)]. A linear shell theory for a homogeneous
elastic shell yields E1 = Eh/(1 + ν), E2 = Ehν/(1 − ν2),
F1 = Eh3/[12(1 + ν)], F2 = Eh3ν/[12(1 − ν2)] and other
coefficients equal to zero, with E,ν the 3D elastic modulus
and Poisson ratio of the shell material and h the thickness of
the shell [21,22]. The elastic moduli EPC, FPC, and HPC do not
contribute to the work (59) and only exist for nonequilibrium
systems: they vanish for an elastic shell at equilibrium as they
do not derive from a free energy.

B. Constitutive relations for an active elastic shell

For an active elastic shell, an active contribution to the
tension and bending moment tensors can be added to the elastic

contribution in Eqs. (66)–(68):

t̄ aij = (
ζgij + ζ ′Ck

kgij + 2ζ̃ C̃ij

)
�μ, (69)

m̄a
ij = (

ζcgij + ζ ′
cCk

kgij + 2ζ̃cC̃ij

)
�μ, (70)

where we restrict ourselves here for simplicity to the case of a
nonchiral surface with broken up-down symmetry. The metric
and curvature tensors gij and Cij are taken on the deformed
surface. In the expansions above, the terms proportional to ζ

and ζc, which are to lowest order in the curvature, introduce,
respectively, an active tension and an active torque within the
elastic shell.

We can perform a stability analysis of a nonchiral elastic
flat active surface subjected to spatially uniform active stress
and torques, similar to the calculation of Sec. III F 2 for the
fluid case (Appendix J). We find

ξ∂t h̃ = −ζ�μq2h̃ −
{
F + (ζ ′

c + ζ̃c)�μ

− K

E
[G + (ζ ′ + ζ̃ − ζc)�μ]

}
q4h̃, (71)

where we have introduced an effective external friction force
normal to the surface, with friction coefficient ξ , the Fourier
transform of the height h̃, and the coefficients F = F1 + F2,
K = K1 + K2, E = E1 + E2, and G = G1 + G2. The elastic
surface is then unstable for

ζ�μ < 0, (72)

K(ζ ′ + ζ̃ − ζc)�μ

E
> F − KG

E
+ (ζ ′

c + ζ̃c)�μ. (73)

As for the fluid case [Eqs. (57) and (58)], an instability can
arise from active compressive stresses in the surface, or from
active couplings between tension and curvature.

The deformation induced by a gradient of active stress and
torques in a cylindrical elastic shell has been discussed in
Ref. [23]. In this work, it was shown that deformation profiles
depend on two characteristic lengths which depend on the shell
bending modulus, elastic modulus, cylinder radius, and on the
active tension acting within the shell.

V. DISCUSSION

We have developed a general, covariant theory for the dy-
namics of active surfaces. Starting from balances of forces and
torques, we have derived an expression for the virtual work.
We have identified the entropy production on a curved surface
which generalizes the entropy production of bulk fluids known
from irreversible thermodynamics to surfaces of arbitrary
shapes [18]. Using this entropy production, we have identified
conjugate fluxes and forces for an active fluid membrane. Our
approach can also be directly applied to the study of active
elastic surfaces. Our constitutive relations for active surfaces
include the derivation of a fully generalized Hooke’s law for
elastic thin shells. We have classified active surfaces in five
different symmetry classes: (i) up-down symmetric, nonchiral
surfaces, (ii), nonchiral surfaces with broken up-down sym-
metry, (iii) chiral surfaces, (iv) planar-chiral surfaces, and (v)
chiral surfaces with broken up-down symmetry. Classes (i) and
(ii) have been characterized before. Chiral surfaces (iii) must
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consist of chiral constituents and are up-down asymmetric,
while planar-chiral surfaces (iv) do not have to be built from
chiral subunits and only appear chiral when viewed from one
side (Fig. 4). The constitutive equations for the surface have to
obey these symmetries and coupling terms in the constitutive
equation can be associated with these symmetry classes.

We have neglected here some degrees of freedom of the
surface, such as the local rotation rate of molecules �ij which
relaxes rapidly to the vorticity flow ωij [16]. We have also
identified the normal derivative of the surface deformation with
the rotation of the normal vector to the surface [Eqs. (B21)
and (14)]. This corresponds to neglecting a component of
the shear normal to the surface. This additional contribution
could be taken into account by adding an additional polar field
tangential to the surface. We have considered the physics of an
isolated surface, not taking into account the environment and
external forces. Furthermore, we have restricted ourselves to
isotropic surfaces. It will be interesting to expand the theory
presented here to the case of active nematic or polar surfaces.

When the surface is embedded in a viscous fluid, external
forces and torques acting on the surface arise from stresses
acting within the bulk fluid. The hydrodynamics of the 3D
fluid and of the membrane are then coupled to each other.
It would be interesting to expand the theory obtained here to
include these couplings between the surface and the bulk fluid.

Our work is related to previous works on active membrane
and membrane dynamics [10–12,14,24–30] as well as on
works on thin active films [31–33]. We propose here a generic
framework for active surfaces that captures many aspects of
the physics discussed in earlier works. In addition, we identify
new active terms associated with internal tensions and bending
moments. In particular, we show the existence of active torque
terms that can induce curvature changes.

Our general approach provides a framework for the study
of complex morphological changes of active surfaces in
biology, for example, during morphogenesis of an organism
or the formation of complex cell shapes. We have introduced
a limited number of phenomenological parameters which
capture the generic effects of a large variety of molecular
processes in cells and tissues. We expect in particular that
biological processes such as tissue folding, invagination,
and twisting can be captured by our theory [34,35]. Fold
formation could occur through apical constriction [13], which
corresponds to the establishment of a difference in apical and
basal surface tension in an epithelium, resulting in a gradient of
active bending moment. Our theoretical framework provides
a formalism to study how such gradients can result in tissue
folding. By quantifying forces and deformations in tissues,
the phenomenological parameters we introduce could be ex-
perimentally measured. Active tensions and bending moments
could be related to the spatial and temporal distribution of
force-generating elements such as myosin molecular motors in
a tissue, as has been done to estimate active stresses distribution
in the cell cortex [36–38].

In general, biological systems have both elastic and
viscous properties that could be captured by a viscoelastic
generalization of our theory. However, in many cases either
elastic or viscous properties dominate: plant morphogenesis is
often described as an active elastic medium, while long-time
behavior of tissue flows during animal morphogenesis can be

captured by a viscous limit, on time scales where cells can
rearrange their neighbors [39,40]. It will be a future challenge
to find analytic and numerical solutions for the complex shape
changes predicted by our theory.
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APPENDIX A: DIFFERENTIAL GEOMETRY

We give here definitions of differential geometry quantities
used in the text. We consider a two-dimensional surface
parametrized by two coordinates X(s1,s2). Two tangent vectors
and a normal vector are associated to every point on the surface,
according to

e1 = ∂X
∂s1

, e2 = ∂X
∂s2

, n = e1 × e2

|e1 × e2| . (A1)

Lower indices correspond to covariant coordinates and upper
indices to contravariant coordinates. The metric gij and
curvature tensor Cij associated to X are defined by

gij = ei · ej , Cij = −(∂i∂j X) · n, (A2)

and Ci
j = Cikg

kj . The inverse of the metric tensor gij = gij
−1

verifies

gijg
jk = δi

k. (A3)

The contravariant basis is defined by

ei · ej = δi
j , (A4)

with ei = gij ej . Indices can be raised and lowered by con-
traction with the metric tensor according to ai = gij aj and
ai = gij a

j for a tangent vector a = aiei = aiei .
The derivatives of the basis and normal vectors are given

by the Gauss-Weingarten equations

∂in = Ci
j ej , (A5)

∂iej = −Cij n + 	k
ij ek, (A6)

where the Christoffel symbols 	k
ij are obtained from the metric

by

	k
ij = 1

2gkm[∂jgim + ∂igjm − ∂mgij ]. (A7)

The surface area element is denoted dS = √
gds1ds2 where

g = det(gij ) is the determinant of the metric.
The Levi-Civita tensor on the curved surface can be defined

as

εij = n · (ei × ej ). (A8)

It is antisymmetric when expressed in a purely contravariant
or covariant basis:

εij = √
g

(
0 1

−1 0

)
, εij = 1√

g

(
0 1

−1 0

)
. (A9)
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Furthermore, it satisfies the identity

εij ε
jk = −δk

i . (A10)

The Levi-Civita tensor can be used to express vectorial
products of the basis vectors:

n × ei = εi
j ej , (A11)

ei × ej = εij n. (A12)

The second relation implies

|a × b| = εij a
ibj , (A13)

for two tangent vectors a and b. A tensor with two indices can
generally be decomposed into a symmetric and antisymmetric
part:

Aij = Aij
s + Aij

a (A14)

= Aij
s + 1

2Aklεklε
ij . (A15)

We denote ∂i = ∂/∂si and ∇i the covariant derivative,
which has the property for a tangent vector a = aiei and tensor
t = t ij ei ⊗ ej :

∇ia
j = (∂ia) · ej , (A16)

∇i t
jk = ej · (∂it) · ek. (A17)

The definitions above then correspond to the following
expressions:

∇iv
j = ∂iv

j + 	
j

ikv
k, (A18)

∇i t
jk = ∂i t

jk + 	
j

il t
lk + 	k

il t
j l . (A19)

For a general vector f = f iei + fnn, we have

∂if = (∇if
j + Ci

jfn

)
ej + (∂ifn − Cijf

j )n. (A20)

The curvature tensor satisfies the Mainardi-Codazzi equa-
tion [41]

∇iCjk = ∇jCik. (A21)

The curvature tensor also satisfies the identity

∇i

(
Ci

j − Ck
kδi

j

) = 0, (A22)

as well as the relation

CikC
k
j = Ck

kCij − gij det
(
Ck

l
)
. (A23)

The covariant derivatives of the metric and of the Levi-Civita
antisymmetric tensor vanish:

∇ig
jk = 0, (A24)

∇iε
jk = 0. (A25)

The coordinates of the tangent vectors in the 3D space with
Cartesian Euclidian basis uα are written

ei = ei,αuα, (A26)

ei = ei
αuα. (A27)

The gradient of a vector field v(xα) in the 3D space can be
evaluated on the surface X through

∂vβ

∂xα

= (∂ivβ)ei
α + (∂nvβ)nα, (A28)

where ∂nv is the derivative normal to the surface. In particular,
the curl of a vector field on the surface is given by

(∇ × v)α = εαβγ ei
β∂ivγ + εαβγ nβ∂nvγ . (A29)

The divergence theorem on a curved surface can be expressed
using the covariant derivative [8]:∫

S
dS ∇if

i =
∫
C
dl νif

i, (A30)

where S is the surface enclosed by C, ν is a unit vector tangent
to S, outward-pointing and normal to the contour C, and dl

is an infinitesimal line element going along the contour C.
Equation (A30) results from the identity [41]

∂i

√
g = √

g	k
ki . (A31)

Indeed, denoting s a coordinate going along the closed contour
C in a trigonometric orientation around the normals to the
surface S, one obtains∫

S
dS ∇if

i =
∫
S

ds1ds2∂i(
√

gf i)

=
∫
C
ds

√
g

[
∂s2

∂s
f 1 − ∂s1

∂s
f 2

]

= −
∫
C
ds

∂si

∂s
εijf

j

=
∫
C
dl νif

i, (A32)

where the second line results from the usual divergence
theorem, the third line from Eq. (A9), and the fourth line
from the relations

dl = ds|es |, (A33)

ν = es × n
|es × n| = −∂si

∂s
εi

j ej /|es |, (A34)

with es = ∂sX = (∂si/∂s)ei the vector tangent to the
contour C.

APPENDIX B: VARIATION OF SURFACE QUANTITIES

We consider here that the surface X is modified to a new
surface X′:

X′(s1,s2) = X(s1,s2) + δX(s1,s2). (B1)

We derive here expressions for the perturbations of the
associated differential geometry quantities. The tangent vector
variation reads as

δei = ∂iδX. (B2)

Using gij = (∂iX) · (∂j X), one finds

δgij = (∂iδX) · ej + (∂j δX) · ei . (B3)
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Using n · ei = 0 and n · n = 1,

δn = −[(∂iδX) · n]ei . (B4)

Using ei · ej = δi
j , resulting in ei · δej + δei · ej = 0,

δei = −[(∂j δX) · ei]ej + [(∂iδX) · n]n. (B5)

Using Cij = −(∂i∂j X) · n and Ci
j = Cikg

kj ,

δĈij = −(∇i∂j δX) · n, (B6)

δCi
j = δĈikg

kj + Cikδg
kj . (B7)

Note that we distinguish δĈij = C ′
ij − Cij and δCi

j = C ′
i
j −

Ci
j , which are two different tensors, related by Eq. (B7).
Using 	k

ij = (∂i∂j X) · ek ,

δ	k
ij = (∇i∂j δX) · ek − Cij (∂kδX) · n. (B8)

Separating δX into a tangent and normal part

δX = δXiei + δXnn, (B9)

we obtain the expressions in terms of components of the shape
perturbation:

δei = (∇iδX
j + Ci

j δXn)ej + (∂iδXn − Cij δX
j )n, (B10)

δei = −(∇j δXi + Cij δXn)ej + (∂iδXn − Ci
j δX

j )n, (B11)

δn = (−∂iδXn + Cij δX
j )ei , (B12)

δgij = ∇iδXj + ∇j δXi + 2Cij δXn, (B13)

δgij = −∇iδXj − ∇j δXi − 2Cij δXn, (B14)

δ
√

g = 1

2
√

ggij δgij , (B15)

δĈij = −∇i(∂j δXn) + (∇j δX
k)Cik + (∇iδX

k)Ckj

+ (∇iCjk)δXk + δXnCikC
k
j , (B16)

δCi
j = −∇i(∂

j δXn) + (∇iδX
k)Ck

j − (∇kδXj )Cik

+ (∇iC
j
k)δXk − δXnCikC

kj , (B17)

δ	k
ij = ∇i(∇j δX

k) + (CijC
k
l − CjlCi

k)δXl + Cj
k(∂iδXn)

+Ci
k(∂j δXn) − Cij (∂kδXn) + (∇iCj

k)δXn. (B18)

In order to define the the normal derivative of an in-
finitesimal surface deformation ∂nδX, we introduce material
coordinates for the points in the volume around the surface:

X(s1,s2,z) = X(s1,s2) + zn, (B19)

with z a coordinate going along the normal to the surface.
When the surface is deformed with infinitesimal vector
deformation δX, we assume that the volume around the surface
is deformed by

δX(s1,s2,z) = δX(s1,s2) + zδn. (B20)

This choice implies that only in-plane shear occurs. We then
obtain

∂zδX = δn = −[(∂iδX) · n]ei . (B21)

We identify ∂nδX with ∂zδX in Eq. (14). This choice is
equivalent to assume that points along the normal to the initial
surface before deformation are along the normal to the new
surface after deformation.

APPENDIX C: FORCE BALANCE DERIVATION

We discuss here the force and torque balance for an element
of surface. We consider a force balance equation taking into
account the contribution of mass accretion or ejection from the
surface. For simplicity, we assume here that mass accretion or
ejection occurs only on one side of the surface. Applying the
law of Newton on a surface region S of contour C yields

∂t

(∫
S

dS ρv
)

=
∫
S

dS J ρ
n (v + u) +

∮
C
dl νi(ti − ρviv)

+
∫
S

dS fext
0 , (C1)

where the second term arises from the change of momentum
due to mass being absorbed by the surface with velocity u
relative to the surface. The third term arises from the force
acting on the surface S from the surface outside of S and
includes the flux of momentum at the contour C that is lost
by advection. fext

0 is the external stress acting on the surface
in addition to the momentum of incoming molecules. The
flux of mass towards the surface J

ρ
n is introduced in Eq. (20).

The surface momentum rate of change can be rewritten using
Eqs. (E15), (20), and the divergence theorem (A30):

∂t

(∫
S

dS ρv
)

+
∮
C
dl νiv

iρv

=
∫
S

dS
[
∂t (ρv) + vnCk

kρv
] +

∮
C
dl νiv

iρv

=
∫
S

dS
[
ρ∂tv − ∇i(ρvi)v + J ρ

n v + ∇i(ρviv)
]

=
∫
S

dS[ρ(∂tv + vi∇iv) + J ρ
n v], (C2)

such that the force balance equation (C1) can be rewritten∫
S

dS ρa =
∮
C
dl νiti +

∫
S

dS fext, (C3)

where we have introduced the total external force fext = fext
0 +

J
ρ
n u, and the acceleration a is defined by

a = dv
dt

, (C4)

with d/dt = ∂t + vi∇i the convected derivative. Using the
divergence theorem (A30), Eq. (C3) can be rewritten∫

S
dS[ρa − ∇iti − fext] = 0. (C5)

Because this equation has to be valid for any surface element,
this results in Eq. (7), which can also be written in the form of
a local conservation of momentum:

1√
g

∂t (
√

gρv) = ∇i(ti − ρviv) + fext
0 + J ρ

n (v + u). (C6)
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Here, the two last terms arise from exchange of momentum
between the surface and its environment.

Ignoring the moment of inertia tensor for simplicity, the
total torque acting on a surface region S of contour C vanishes:

∮
C
dl νimi +

∮
C
dl X × νiti +

∫
S

dS X × (fext − ρa)

+
∫
S

dS �ext = 0, (C7)

where �ext is the external torque density acting on the
surface. Using the divergence theorem and the force balance
equation (7), the torque balance equation can be rewritten

∫
S

dS[∇imi + ei × ti + �ext] = 0, (C8)

which results in the torque balance expression Eq. (8).
We note that the force balance equations (9)–(12) are

invariant under the variable transformation

t ij → t ij + mεi
kC

kj , (C9)

t in → t in + εij (∂jm), (C10)

mij → mij + mgij . (C11)

where m is an arbitrary function on the surface, and we have
used Eqs. (A21) and (A23).

APPENDIX D: DIFFERENTIAL WORK

The virtual work defined in Eq. (13) can be rewritten using
the divergence theorem on a curved surface (A30) and the
force and torque balance equations (7) and (8):

δW =
∫
S

dS

[
ti · ∂iδX + 1

2
mi · ∂i(∇ × δX)

+ 1

2
(ti × ei) · (∇ × δX)

]
. (D1)

Projecting t i and mi along the tangent and normal directions
and using Eqs. (A11) and (A12), one finds

δW =
∫
S

dS

[
t ij ej · ∂iδX + t inn · ∂iδX + 1

2
mij ej · ∂i(∇ × δX)

+ 1

2
mi

nn · ∂i(∇ × δX) − 1

2
t ij εij n · (∇ × δX)

+ 1

2
t inεij ej · (∇ × δX)

]
. (D2)

Using the definition of the curl operator (14), the relations
(A11) and (A12), the expression of the normal derivative of the
displacement (B21), the variation of the curvature tensor (B6),
and of the Christoffel symbols (B8), the following identities

can be obtained:

n · (∇ × δX) = εi
j (∂iδX) · ej , (D3)

ei · (∇ × δX) = 2εij (∂j δX) · n, (D4)

ej · ∂i(∇ × δX) = (
2Ci

lεj
k + Cij ε

kl
)
(∂kδX) · el − 2εj

kδĈik,

(D5)

n · ∂i(∇ × δX) = εj
kδ	

k
ij . (D6)

Using these relations, the virtual work can be rewritten

δW =
∫
S

dS

[(
t ij − 1

2
t klεklε

ij + mklCk
j εl

i + 1

2
mklCklε

ij

)

× (∂iδX) · ej − mij εj
kδĈik + 1

2
mi

nε
j
kδ	

k
ij

]
. (D7)

Using the in-plane torque tensor introduced in Eq. (17) m̄ij =
−mikεk

j (with inverse relation mij = m̄ikεk
j ) and using the

expression for the variation of the metric (B3), one finds

δW =
∫
S

dS

{
1

2

[
t ijs − 1

2
(m̄kiCk

j + m̄kjCk
i)

]
δgij

+ m̄ij δĈij + 1

2
mi

nε
j
kδ	

k
ij

}
. (D8)

Using Eq. (B7) leads to the alternative expression of the virtual
work

δW =
∫

S

dS

{
1

2

[
t ijs + 1

2

(
m̄kiCk

j + m̄kjCk
i
)]

δgij

+ m̄i
j δCi

j + 1

2
mi

nε
j
kδ	

k
ij

}
, (D9)

which leads to Eq. (15) with the definition (16).
The deformation term in factor of mi

n is a generalization to
curved surfaces of the gradient of rotations [16]. This can be
seen from its explicit expression in term of the deformation
coordinates

εj
kδ	

k
ij = ∇i(ε

j
k∇j δX

k) − 2Cij ε
jk(∂kδXn − CklδX

l),

(D10)

where we have used Eq. (B18).

APPENDIX E: EULERIAN AND LAGRANGIAN
REPRESENTATIONS OF SURFACE FLOWS

1. Lagrangian representation

In a Lagrangian representation, the parameters s1 and s2

label the center of mass of a specific volume element. The
surface is characterized by the time-dependent parametrization
X(s1,s2,t). The center-of-mass velocity is given by

v = ∂tX(s1,s2,t). (E1)

The mass density conservation equation without exchange
between the surface and its environment reads as in Lagrangian
coordinates

∂tρ + ρ
(∇iv

i + Ci
ivn

) = 0. (E2)
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This can be seen from the conservation of mass of a region of
surface S:

d

dt

[∫
S

dS ρ(s1,s2)

]
= 0, (E3)

∫
S

ds1ds2[ρ∂t (
√

g) + √
g∂tρ] = 0, (E4)

∫
S

dS
[(∇iv

i + vnC
i
i

)
ρ + ∂tρ

] = 0, (E5)

which leads to Eq. (E2). In this derivation, we have obtained
d
√

g/dt by setting δX = vdt in Eq. (B15).
The rate of change of metric in Lagrangian coordinates

∂tgij = ∇ivj + ∇j vi + 2vnCij , (E6)

obtained by setting δX = vdt in Eq. (B13), relates to the
gradient of flow defined in Eq. (38) through ∂tgij = 2vij .
Similarly, the rate of change of the curvature tensor in
Lagrangian coordinates, obtained by setting δX = vdt in
Eq. (B17), defines a convected Lagrangian derivative D̄/D̄t

of the curvature tensor:
D̄Ci

j

D̄t
= −∇i(∂

jvn) − vnCikC
kj + (∇iC

j
k

)
vk

+ (∇iv
k)Ck

j − (∇kv
j )Ci

k, (E7)

and its symmetric part is introduced in Eq. (40). The rate of
change of the Christoffel symbols is related to the gradient of
rotations introduced in Eqs. (37) and (39) through the identity

1

2
εj

k

D̄	k
ij

D̄t
= ∂iωn − Cijω

j = (∂iω) · n, (E8)

where we have used Eq. (B18).

2. Eulerian coordinates

In Eulerian coordinates, the center-of-mass velocity field is
given by

v = viei + vnn, (E9)

where viei is the tangential velocity field, and the normal
velocity field is given by

vn = (∂tX(s1,s2,t)) · n. (E10)

In addition, one requires the condition

(∂tX(s1,s2,t)) · ei = 0, (E11)

such that coordinates do not change when the shape of the
surface is not changing. Here, s1 and s2 do not describe a
specific material element.

In the Eulerian perspective, the time derivative of the
tangent vectors, normal, metric, surface element area, and
curvature are given by

∂tei = vnCi
j ej + (∂ivn)n, (E12)

∂tn = −(∂ivn)ei , (E13)

∂tgij = 2vnCij , (E14)

∂t

√
g = √

gvnCi
i, (E15)

∂tCi
j = −∇i(∂

jvn) − vnCikC
kj , (E16)

where we have used Eqs. (B10), (B12), (B13), (B15), and
(B17) with δXi = 0 and δXn = vndt .

Mass conservation without exchange between the surface
and its environment has the form

∂tρ + ∇i(ρvi) + ρCi
ivn = 0, (E17)

which follows from the mass conservation of an element of
surface S with fixed contour C:

d

dt

(∫
S

dS ρ

)
= −

∮
C
dl ν · vρ = −

∫
S

dS ∇i(v
iρ),

∫
S

ds1ds2[(∂t

√
g)ρ + √

g∂tρ] = −
∫
S

dS ∇i(v
iρ),

∫
S

dS
[(

vnCi
i
)
ρ + ∂tρ + ∇i(ρvi)

] = 0, (E18)

which leads to Eq. (E17). The acceleration reads as [Eq. (C4)]

a = ∂tv + vi∂iv (E19)

= [
∂tv

i + vj∇j v
i + 2vnv

jCj
i − vn∂

ivn

]
ei

+ [∂tvn + 2vi∂ivn − vivjCij ]n, (E20)

where we have used Eqs. (E12) and (E13).

APPENDIX F: TRANSLATION AND ROTATION
INVARIANCE

We derive here relations for the stress and torque tensor
of a fluid surface, obtained from the invariance of the free
energy under rigid translation and rotations of the surface. We
consider for this derivation a surface in the absence of external
forces. The fluid surface contains N species α = 1 . . . N with
concentration cα and its free energy density is given by
Eq. (19). The deformation by an infinitesimal rigid translation
or rotation defines a new surface X′ = X + δX. The new
surface is then reparametrized by new coordinates, such that a
point (s1,s2) on the initial surface finds its new position on the
new surface by going along the normal to the initial surface
(Fig. 3):

X′′(s1,s2) = X(s1,s2) + (δX · n)n. (F1)

1. Invariance by translation

We consider here a rigid translation of the surface by an
infinitesimal uniform vector δa, implying ∂iδa = 0 and the
relations (28) and (29). With the choice of coordinates (F1),
the concentration and kinetic energy density fields on the
surface are modified only by the tangential contributions of
displacement:

δcα = −(∂ic
α)δai, (F2)

1
2δ(ρv2) = − 1

2 [∂i(ρv2)]δai. (F3)

The geometric quantities on the new surface can be obtained
by using Eqs. (B15) and (B17), with the normal displacement
(F1), and using Eqs. (28), (29), and (A21):

δ
√

g = √
gCi

iδan, (F4)

δCj
k = −(∇iCj

k
)
δai . (F5)
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The variation of surface free energy after the rigid translation
must vanish, and is given by

δF =
∫
S

dS
[
f δanCk

k + δf
] +

∮
C
dl νi[f δai]

=
∫
S

dS

{
f δanCk

k − μα(∂ic
α)δai −

[
1

2
∂i(ρv2)

]
δai

−Kjk(∇iCjk)δai + ∇i(f δai)

}

= δai

∫
S

dS[−(μα∂ic
α + Kjk∇iCjk) + ∂if0]

= δai

∫
S

dS{∂iμ
αcα + (∇jK

jk)Cik

+∇j [(f0 − μαcα)gi
j − KjkCik]}

= 0, (F6)

where we have used the expression of the differential of the
free energy density (19) at constant temperature, Eq. (28), and
the Mainardi-Coddazi equation (A21). Because Eq. (F6) is
valid for any surface element and any infinitesimal vector δa,
we obtain Eq. (30).

2. Invariance by rotation

We now consider a uniform rotation of the surface with
vector δθ , such that the surface is deformed by δX = δθ × X.
One can verify that the following identity holds for such a
deformation:

∇iδX
i = −Ci

iδXn. (F7)

As for a rigid translation, the concentration and kinetic energy
density fields are modified only by tangential contributions of
displacements. One finds then

δc = −(∂ic
α)δXi, (F8)

1
2δ(ρv2) = − 1

2 [∂i(ρv2)]δXi. (F9)

As for translations, changes in geometric quantities can
be obtained from Eqs. (B15) and (B17), with the normal
displacement (F1):

δ(
√

g) = √
gCi

iδXn, (F10)

δCi
j = −(∇kCi

j )δXk − δωjkCki − δωikC
kj , (F11)

with δωij = εij ( 1
2∇kδXlε

kl) = εij δθ · n. The associated vari-
ation of free energy reads as

δF =
∫
S

dS
[
f δXnCk

k + δf
] +

∮
C
dl νi[f δXi]

=
∫
S
dS

{
f δXnCk

k−μα(∂ic
α)δXi − 1

2
[∂i(ρv2)]δXi −Kij

× (∇kCij )δXk−Kij δωjkCi
k

−Kij δωikC
k
j +∇i(f δXi)

}

=
∫
S

dS
[−(μα∂ic

α + Kjk∇iCjk)δXi + (∂if0)δXi

− δθ · n
(
Kij εjkCi

k + Kij εikC
k
j

)]

= −δθ · n
∫

S

dS
[
Kij εjkCi

k + Kij εikC
k
j

]

= −2δθ · n
∫

S

dS εjkK
ijCi

k

= 0, (F12)

where we have used Eqs. (18), (19), (30), (F7), and the
symmetry of Kij . Because Eq. (F12) is valid for any surface
element and any infinitesimal rotation vector δθ , this results in
Eq. (32).

APPENDIX G: UP-DOWN ASYMMETRY, CHIRALITY,
AND PLANAR CHIRALITY OF SURFACES

We discuss here the symmetries of a surface with rotational
symmetry in the plane. The symmetries that can be broken
for to these surfaces are the up-down mirror symmetry (Mn),
the mirror symmetries in the plane (Mt , a mirror symmetry
by a plane going along an arbitrary tangent vector t), and the
up-down rotation symmetries (Rt , a rotation of π around an
arbitrary tangent vector t). Rotations around the normal with
angle π , Rn preserve the state of a surface with rotational
symmetry in the plane. Composition of these symmetries is
indicated in the multiplication Table II.

Because inversion of space can be written as a composition
of the up-down mirror symmetry and the rotation Rn, I =
RnMn, inversion of space and up-down mirror symmetry
is preserved and broken simultaneously for a surface with
rotation symmetry in the plane.

Under these symmetries, the stress, torque, curvature,
Levi-Civita tensor, as well as vectors and pseudovectors are
modified. We list in Table III signatures of transformations
of components of these tensors associated to the symmetries
introduced above. Vectors transform as the velocity field v
and pseudovectors as the curl of the flow ω. In Table III, an
additional set of signatures can be obtained from the product of
signatures of Mt and Rn (respectively Rt and Rn). The signa-
tures for Mt (respectively Rt ) can be alternatively chosen from
this additional set of signatures. An additional transformation
and set of signatures arises from the combination I = RnMn,
which can be considered alternatively to signatures associated
to Mn.

The force and torque balance equations (9)–(12) are
invariant under these transformations. One can further verify
that transformations under Rn preserve all the constitutive
equations (45)–(49).

TABLE II. Multiplication table of discrete symmetries. 1 denotes
the identity operation, I denotes inversion of space.

Mn Mt Rt Rn

Mn 1 Rt Mt I

Mt Rt 1 Mn MtRn

Rt Mt Mn 1 RtRn

Rn I MtRn RtRn 1
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TABLE III. Signature of symmetries on vector and tensor fields
of the surface. Signatures are chosen to preserve gij and tij under
each transformation.

Symmetry Mn Mt Rt Rn

gij 1 1 1 1
tij 1 1 1 1
t i
n −1 1 −1 −1
mij −1 −1 1 1
mi

n 1 −1 −1 −1
Cij −1 1 −1 1
εij 1 −1 −1 1
vi 1 1 1 −1
vn −1 1 −1 1
∇i 1 1 1 −1
vij 1 1 1 1
ωi −1 −1 1 −1
ωn 1 −1 −1 1

APPENDIX H: EQUILIBRIUM TENSION AND MOMENT
TENSORS, EXTERNAL FORCE, AND TORQUE SURFACE

DENSITIES FOR A FLUID MEMBRANE

Using the expression of the virtual work given in Eq. (15),
we obtain in this appendix the equilibrium tension tensor and
moment tensor for a fluid membrane, first for the generic case,
and then for the specific case of a Helfrich membrane. We then
obtain the external force and torque surface densities induced
by an external potential acting on the surface.

1. Tension and moment tensors for a generic equilibrium
fluid membrane

We start here from a fluid membrane with a free energy
density given by Eq. (18), such that the free energy for a
region of surface S is given by F = ∫

S dS f0 with df0 =
μαdcα + Ki

jdCi
j − s dT . We now calculate the change of

free energy following a change of shape of the surface at
constant temperature. A change of the surface metric results
in a dilution of the concentrations, according to δcα/cα =
−δ(

√
g)/

√
g. As a result and using Eq. (B15), the free energy

differential following a shape change reads as

δF =
∫
S

dS

[
(f0 − μαcα)gij δgij

2
+ Ki

j δCi
j

]
. (H1)

At equilibrium, inertial forces vanish and we have δW =
δF for infinitesimal deformations. Using Eq. (15), one can
then identify the equilibrium tensors t̄

ij
e , m̄

ij
e , mi

e,n given in
Eqs. (33)–(35).

2. Tension and moment tensors for a Helfrich membrane

The Helfrich free energy functional for a region of surface
S of a fluid membrane reads as

F =
∫
S

dS

{
γH + κ

2

[(
Ci

i
)2 − 2C0Ci

i
] + κg det

(
Ci

j
)}

,

(H2)

where γH is the surface tension, κ is the bending rigidity, C0

is the spontaneous curvature, and κg the Gaussian bending

modulus. Using Eq. (15) and the relation δW = δF for
infinitesimal deformations, one finds for the in-plane stress
tensor and bending moment tensor

t̄ ije =
{
γH + κ

2

[(
Ck

k
)2 − 2C0Ck

k
] + κg det

(
Ck

l
)}

gij ,

(H3)

m̄ij
e = (κ + κg)Ck

kgij − κC0g
ij − κgC

ij , (H4)

where we have used det(Ci
j ) = 1

2 [(Ck
k)2 − CikC

ki] by taking
the trace of Eq. (A23), and Eq. (B15). The equilibrium stress
tensor t

ij
e and bending moment tensor m

ij
e are then given in the

absence of external torques by

t ije = γHgij − κ
(
Ck

k − C0
)
Cij + κ

2
Ck

k
(
Ck

k − 2C0
)
gij ,

(H5)

mij
e = (κ + κg)Ck

kεij − κC0ε
ij − κgC

i
kε

kj , (H6)

where we have used the identity (A23). The isotropic part
of the stress tensor γ = ti

i/2 is related to γH by γ = γH −
κC0Ck

k/2. From the force balance equation (11) and because
of Eq. (A22), the equilibrium normal shear stress te,n is given
in the absence of external torque by

t je,n = ∇i m̄
ij
e = κ∇jCk

k, (H7)

which does not depend on the Gaussian bending modulus.
Equations (H5) and (H7) are in accordance with Ref. [8], with
an opposite sign convention for the force density t.

From Eqs. (H5) and (H7), the equilibrium stress tensor
tie does not depend on the Gaussian bending modulus κg .
While m

ij
e depend on κg , terms proportional to κg cancel

when using force balance equations (7) and (8). Therefore,
in accordance with the Gauss-Bonnet theorem, the Gaussian
bending modulus only enters boundary conditions when
solving the force balance equations to find the the surface
shape.

3. External force and torque density for an equilibrium
fluid membrane

If molecules in the surface are subjected to an external
potential U = ∫

S dScαUα(s1,s2,n), where Uα acts on com-
ponent α, the variation of this external potential induced by a
deformation of the surface δX reads as

δU =
∫
S

dScα

[
(∂iU

α)δXi + ∂Uα

∂n
· δn

]
,

=
∫
S

dScα

[
(∂iU

α)δXi + 1

2

(
∂Uα

∂n
· ei

)
εikek · (∇×δX)

]
,

(H8)

where we have used the identities (B4) and (D4). The
contribution of external forces and torques to the virtual work
given in Eq. (13) on the other hand reads as, ignoring here
inertial terms,

δWext =
∫
S

dS

[
fext · δX + 1

2
�ext · (∇ × δX)

]
. (H9)
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Using δWext = −δU , one then obtains the external surface force density and external surface torque density:

fext = −cα(∂iU
α)ei , (H10)

�ext = −cα

(
∂Uα

∂n
· ej

)
εjiei . (H11)

APPENDIX I: ENTROPY PRODUCTION RATE FOR A FLUID SURFACE

We derive here the entropy production rate for a region of a fluid surface S enclosed by a fixed contour C. The time derivative
of the free energy of the surface F is

dF

dt
=

∫
S

dS

[
1

2
∂t (ρviv

i + ρ(vn)2) + Ki
j∂tCi

j + μα∂tc
α

]
+

∫
S

dSvnCi
i

[
1

2
ρv2 + f0

]
. (I1)

Using the following relation obtained from Eq. (E14) ∂tvi = ∂t (gij v
j ) = gij ∂tv

j + 2vnCij v
j , as well as the mass balance equation

(20), one obtains

1
2∂t (ρviv

i + ρ(vn)2) + 1
2ρvnCi

iv2 = ρaivi + ρanvn − 1
2∇i(ρv2vi) + 1

2J ρ
n v2, (I2)

where we have used the expression of the acceleration a obtained in Eq. (E20). Using then the force balance equation (7) and the
concentration balance equation (21), we find

dF

dt
=

∫
S

dS

[
−1

2
∇i(ρviv2) + 1

2
J ρ

n v2 + (∇j t
j i)vi + t jnCj

ivi + f ext,ivi + (∇i t
i
n

)
vn − t ijCij vn + f ext

n vn

+Ki
j∂tCi

j + (f0 − μαcα)Ci
ivn − μα∇i(c

αvi + jα,i) + μα
(
J α

n + rα
)]

. (I3)

Using the divergence theorem (A30), this can be rewritten

dF

dt
=

∫
S

dS

[
−t j i∇j vi + t jnCj

ivi − t in∂ivn − t ijCij vn + fext · v + (f0 − μαcα)Ci
ivn + Ki

j∂tCi
j

+ (∂iμ
α)(cαvi + jα,i) + μα

(
J α

n + rα
) + 1

2
J ρ

n v2

]
+

∮
C
dl νi

[
− 1

2
ρv2vi + t ij vj + t invn − μα(cαvi + jα,i)

]
. (I4)

Using the Gibbs-Duhem equality (30) and the balance of fluxes (22),

dF

dt
=

∫
S

dS

{
− t ij∇ivj − t ijCij vn + t in

(
Ci

jvj − ∂ivn

) + fext · v + (f0 − μαcα)Ci
ivn + Ki

j∂tCi
j

+ viKjk∇iC
jk − [∂i(f0 − μαcα)]vi + (∂iμ

α)jα,i +
(

μα + 1

2
mαv2

)
J α

n + μαrα

}

+
∮
C
dsi

[
−1

2
ρv2vi + ti · v − μα(cαvi + jα,i)

]
. (I5)

Reorganizing, performing an integration by part, introducing the convected derivative of the curvature tensor

dCi
j

dt
= ∂tCi

j + vk∇kCi
j , (I6)

and using the total chemical potential μα
tot = μα + 1

2mαv2, one finds

dF

dt
=

∫
S

dS

{
− [t ij − (f0 − μαcα)gij ]∇ivj − t ijCij vn + t in

(
Ci

jvj − ∂ivn

)

+ fext · v + (f0 − μαcα)Ci
ivn + Ki

j

dCi
j

dt
+ (∂iμ

α)jα,i + μα
totJ

α
n + μαrα

}

+
∮
C
dsi

[
− 1

2
ρv2vi + ti · v − μαjα,i − f0v

i

]
. (I7)
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Using the torque balance equation (11), splitting the tension tensor t ij into a symmetric and an antisymmetric part, and introducing
the equilibrium tension tensor t̄

ij
e = (f0 − μαcα)gij , we obtain

dF

dt
=

∫
S

dS

[
−(

t ijs − t̄ ije
)
vij − 1

2
t klεklε

ij∇ivj + (∇km̄
ki − Cl

kml
nεk

i − 	ext,kεk
i
)(

Ci
jvj − ∂ivn

)

+Ki
j

dCi
j

dt
+ fext · v + (∂iμ

α)jα,i + μα
totJ

α
n + μαrα

]
+

∮
C
dl νi[−f vi + ti · v − μαjα,i], (I8)

where we have introduced the symmetric velocity gradient vij defined in Eq. (38). Using the torque balance equation (12),
performing an integration by part, and using the definition of the vorticity of the flow [Eq. (39)],

dF

dt
=

∫
S

dS

[
− (

t ijs − t̄ ije
)
vij + (∇im

i
n − Cij m̄

ikεk
j + 	ext

n

)
ωn − m̄ki∇k

(
Ci

jvj − ∂ivn

)

+mj
nCj

iωi + Ki
j

dCi
j

dt
+ fext · v + 	ext,iωi + (∂iμ

α)jα,i + μα
totJ

α
n + μαrα

]

+
∮
C
dlνi

[−f vi + ti · v + m̄ik
(
Ck

jvj − ∂kvn

) − μαjα,i
]
. (I9)

Rearranging and performing an integration by part,

dF

dt
=

∫
S

dS

{
− (

t ijs − t̄ ije + Ck
j m̄ki

)
vij − m̄i

j

[−∇i(∂
jvn) − CikC

jkvn + vk∇iC
jk + (∇ivk)Ckj − (∇kv

j )Ci
k
]

−mi
n∂iωn + mi

nCi
jωj + Ki

j

dCi
j

dt
+ fext · v + �ext · ω + (∂iμ

α)jα,i + μα
totJ

α
n + μαrα

}

+
∮
C
dl νi

[−f vi + ti · v + mijωj + mi
nωn − μαjα,i

]
. (I10)

In Eq. (I10), the term in factor of m̄i
j corresponds to the Lagrangian convected derivative of the curvature tensor D̄Ci

j /D̄t ,
defined in Eq. (E7):

D̄Ci
j

D̄t
= dCi

j

dt
+ (∇iv

k)Ck
j − (∇kv

j )Ci
k, (I11)

where we have used the Mainardi-Coddazzi equation (A21). We define the bending rate tensor as the symmetric part of this
tensor:

DCij

Dt
= 1

2

(
gjk

D̄Ci
k

D̄t
+ gik

D̄Cj
k

D̄t

)
, (I12)

whose explicit expression is given in Eq. (40). In addition, one can verify that Ki
j D̄Ci

j /D̄t = Ki
jdCi

j /dt ; indeed

Ki
j

[
(∇ivk)Ckj − (∇kv

j )Ck
i

] = ∇ivj

(
KikCj

k − KkjCi
k

) = 0, (I13)

as a result of the invariance by rotation [Eq. (32)] and the symmetry of Kij . Using these relations and the symmetry of the tensor
Kij , we then find the expression for the rate of change of free energy:

dF

dt
=

∫
S

dS

{
−

[
t
ij − t

ij

e + 1

2
εlnm̄

ln
(
εikCk

j + εjkCk
i
)]

vij − (m̄ij − Kij )
DCij

Dt
− mi

n

(
∂iωn − Ci

jωj

)

+ fext · v + �ext · ω + (∂iμ
α)jα,i + μα

totJ
α
n + μαrα

}
+

∮
C
dl νi[−f vi + ti · v + mi · ω − μαjα,i]. (I14)

In Eq. (37), we have not included the contribution εlnm̄
ln of the antisymmetric part of m̄ij . The antisymmetric part of m̄ij is

related to the trace of mij through the relation mk
k = −m̄ij ε

ij . The transformation invariance in Eqs. (C9)–(C11) implies that
the contribution of the antisymmetric part of the bending moment tensor m̄ij to the force balance equation can be absorbed in a
redefinition of the stress tensor.

APPENDIX J: STABILITY OF A HOMOGENEOUS FLAT
ACTIVE SURFACE

We discuss here the stability of a homogeneous flat active
surface, in the absence of external forces and torques.

1. Fluid surface

Perturbations of the flat shape of the fluid surface are de-
scribed in the Monge gauge by the height h(x,y) such that the
surface position is given by X(x,y) = xux + yuy + h(x,y)uz.
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Calculations are performed for a weakly bent surface, |∂ih| �
1, at linear order in the height h and velocity field v. In
this limit, covariant and contravariant indices can be used
indifferently, and

gij � δij , (J1)

Cij � −∂i∂jh. (J2)

The rate of deformation tensors are given by

vij � 1

2
(∂ivj + ∂jvi), (J3)

DCij

Dt
� −∂t∂i∂jh, (J4)

ωn � 1

2
εij ∂ivj , (J5)

ωi � εij ∂j vn. (J6)

The tensions and torque tensors are given by

t ij = η(∂ivj + ∂jvi) + (ηb − η)(∂kvk)δij − 2η̄∂i∂j ∂th

− (η̄b − η̄)(∂t�h)δij + {γH + ζ�μ

− [−κC0 + (ζ ′ − ζ̃ )�μ]�h}δij − 2ζ̃�μ∂i∂jh,

(J7)

m̄ij = −2ηc∂i∂j ∂th − (ηcb − ηc)(∂t�h)δij + η̄(∂ivj + ∂jvi)

+ (η̄b − η̄)∂kvkδij

+{ζc�μ − κC0 − [κ + κg + (ζ ′
c − ζ̃c)�μ]�h}δij

− [−κg + 2ζ̃c�μ]∂i∂jh, (J8)

mn,i = λ

2
∂iεkl∂kvl, (J9)

where we have used the Laplacian operator � = ∂2
x + ∂2

y .
The force and torque balance equations then yield, neglecting
inertial terms at low Reynolds number,

η�vj +ηb∂j ∂kvk−(η̄b+η̄)∂j ∂t�h− (ζ ′ + ζ̃ − ζc)�μ∂j�h

= −1

2
εij ∂i(εkltkl), (J10)

∂itn,i = −�h[γH + ζ�μ], (J11)

tn,j = −(ηcb + ηc)∂j ∂t�h + η̄�vj + η̄b∂j ∂ivi

− [κ + (ζ ′
c + ζ̃c)]∂j�h, (J12)

εij tij = −λ

2
�(εkl∂kvl). (J13)

We then obtain the shape equation[
ηcb + ηc − (η̄ + η̄b)2

η + ηb

]
∂t��h

= −
{
κ +

[
ζ ′
c + ζ̃c + η̄ + η̄b

η + ηb

(ζc − ζ ′ − ζ̃ )

]
�μ

}
��h

+ (γH + ζ�μ)�h. (J14)

2. Elastic surface

Perturbations of the flat shape of the elastic surface are
described in the Monge gauge by the height h(x,y) and the
tangential deformation field u such that the surface position
is given by X(x,y) = [x + ux(x,y)]ux + [y + uy(x,y)]uy +
h(x,y)uz. Calculations are performed for a weakly bent sur-
face, |∂ih| � 1, at linear order in the height h and deformation
field u. The deformation fields are given by

uij � 1
2 (∂iuj + ∂jui), (J15)

cij � −∂i∂jh, (J16)

�i � 1
2εjk∂i∂juk. (J17)

On the deformed surface, the metric and curvature tensors
are given by gij � δij + 2uij , Cij � cij , and the Christoffel
symbols by 	k

ij � ∂i∂ju
k . The tensions and torque tensors are

given in the limit of small displacements by

t
ij = E1

1
2 (∂iuj + ∂jui) + E2∂kukδij − G1∂i∂jh − G2�hδij

+�μ[ζ δij − (ζ ′ − ζ̃ )�hδij − 2ζ̃ ∂i∂jh]

− ζ�μ(∂iuj + ∂jui), (J18)

mij = −F1∂i∂jh−F2�hδij + K1
1
2 (∂iuj+∂jui)+K2∂kukδij

+�μ[ζcδij − (ζ ′
c − ζ̃c)�hδij − 2ζ̃c∂i∂jh]

− ζc�μ(∂iuj + ∂jui), (J19)

mn,i = H1
1
2εjk∂i∂juk. (J20)

A calculation similar to the fluid case then yields the equation
for the surface height

ξ
dh

dt
= ζ�μ�h −

{
F1 + F2 + (ζ ′

c + ζ̃c)�μ − K1 + K2

E1 + E2

× [G1 + G2 + (ζ ′ + ζ̃ − ζc)�μ]

}
��h, (J21)

where we have introduced an effective external friction force
fext = −ξv · n.
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